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Abstract— Current development in sensor technology allows
to capture highly detailed geometric 3D environment mod-
els fast and online with laser scanners or RGB-D cameras.
However, in most rescue and service scenarios, the available
bandwidth between operator and controlled robots is limited.
In this paper, we integrate Google’s geometry compression
library Draco into ROS to reduce the required bandwidth when
sending geometry data from a remote-controlled robot to a
RViz instance running on the operator’s computer. Besides a
prototypical implementation, we present an in-depth analysis
of the achievable compression rates, accuracy and resulting
latency when using Draco for this purpose.

I. INTRODUCTION
Generating realistic representations of unknown environ-

ments and sending the captured information back to the oper-
ator is key problem when operating a mobile robot remotely
or semi-autonomously. When such operation takes place in
unknown environments with no accessible communication
infrastructure, available band width becomes an issue. Today,
mobile robots equipped with mobile laser scanners or RGB-
D cameras are capable of generating realistic environment
models in real time on board. A well known example for this
is Kinect Fusion and its extensions [1], [2] that are able to
generate highly realistic 3D polygon models with textures,
even of large scale environments [3]. Besides these RGB-
D based approaches, robots equipped with high resolution
laser scanners can produce even more accurate environment
models at the cost of gathering gigabytes of data. Our
own previous work concentrated on reconstructing textured
polygonal models from such massive data sets to reduce
the amount of data while keeping geometric precision [4],
[5]. However, these methods concentrate on reducing the
number of triangles in the generated models without taking
the encoding of the captured data into account.

In this paper, we present an approach to integrate the open
source geometry compression library Draco [6] developed by
Google into a set of ROS-based tools to compress 3D envi-
ronment models captured on a mobile robot. The sensor data
is compressed on board the mobile robot and then encoded
into special ROS messages. These compressed messages are
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sent from the robot to the ROS master controlling the robot.
A conversion node then decodes the received geometry data
into uncompressed ROS messages that can be visualized in
RViz in real time. Since our software stack completely relies
on either standard ROS geometry messages or our own 3D
extensions and RViz plug-ins, our compression method can
be used directly with all SLAM and reconstruction methods
supporting these message types.

In the following, we describe the integration of the Draco
compression library into the existing ROS infrastructure.
We present how this library can be used to compress and
de-compress large 3D models. To demonstrate the benefits
of this approach, we evaluate our approach on different
reference data sets that were chosen to cover a number of
typical robotic application scenarios. With these reference
data sets, we provide a detailed evaluation of encoding and
decoding time as well as achievable compression rates within
ROS’ infrastructure.

II. RELATED WORK

Most previous work on creating compact, realistic envi-
ronment models concentrates on the algorithmic aspects of
computing polygonal surface reconstructions from 3D point
cloud data. However, these lines of work do not take the
efficient encoding of such models into account. Recent work
on geometry compression has provided several methods to
compress point cloud and mesh based models with high
efficiency. For point cloud data, mostly octree based methods
with sophisticated encoding are used. To reduce the amount
of transmission data, the octree depth is limited to a de-
termined value depending on the available bandwidth. For
3D geometries, existing approaches take connectivity coding
and other metrics into account. Draco, for example, strongly
relies on technique called Edgebreaker [7] to compress
mesh data. A detailed survey of basic mesh compression
technologies is given in [8]. As standards for point cloud
and geometry compression are still under development [9],
several freely available libraries exist. In [10], Doumanoglou
et al. presented an extensive evaluation Google Draco [6],
O3dgc [11], Corto [12], and OpenCTM [13] in the context of
live streaming of 3D geometry data. They came up two inter-
esting findings that inspired the work presented in this paper:
First, Draco outperforms other libraries in scenarios with
higher latency, and second, that Draco can also effectively
include additional vertex attributes like normals or colors. In
this work we exploited this extensibility to also include face
attributes like materials into the encoded data stream, which
to our knowledge has not been evaluated before.



The remainder of this paper is organized as follows:
First, we present the integration of our draco-based geometry
compression into existing ROS tools and the conversion of
the compressed data streams to uncompressed ROS geometry
messages. The experiments presented in Section IV concen-
trate on achievable compression rates, geometric precision
of the decompressed messages and resulting latencies due to
de- and encoding. The final section discusses the presented
results and concludes.

III. INTEGRATING DRACO IN ROS
A. Mesh Tools

Utilizing 3D data in the ROS ecosystem has gained a lot of
popularity in recent years. 3D point clouds are generally well
supported within ROS through the Pointcloud2-Message,
which is based on the data format of the Point Cloud Library
(PCL) [14]. PCL implements a variety of point cloud based
algorithms for robotic applications and is well connected
with ROS’ infrastructure making processing of 3D point
cloud data possible in a number of different ROS packages.

In constrast to point cloud data, the support of 3D polygon
data is very limited. An analogous infrastructure to the PCL-
based 3D point cloud support is missing. RViz supports
the rendering of polygonal robot models in URDF. These
models can also be loaded in Gazebo as well as polygonal
environment maps, but these representations are linked to
static ressources (either to URDF models or to static world
files in the user’s file system). Sending complex polygonal
environment models is currently not efficiently supported
by ROS. Standardized messages to exchange 3D maps with
annotations are currently missing.

To integrate such maps into ROS, we have developed the
Mesh Tools software1. This package provides a set of tools
allowing for the efficienct transmission of meshes within a
ROS system as well as visualization in RViz. Additionally,
processing on meshes is also possible through our Las Vegas
Reconstruction Toolkit (LVR) [5]2 enabling the development
of 3D mesh processing algorithms for robotic applications.
Our Mesh Tools package provides ROS messages to define
3D geometries, transformation of triangle meshes in ROS’
tf-framework, adding vertex and face annotations and tools
to efficiently serialize such messages.3.

The Mesh Tools package strictly separates between ge-
ometry definition and additional attributes. This separation
was chosen deliberately to allow for dynamic on-demand
computation of attributes and other data related to an exising
mesh without having to transmit the geometry between
different nodes every time an annotation changes. This allows
to add certain attributes linked to the mesh’s vertices or
faces on demand. For example, roughness or trafficability
information can be computed based on the geometry and
added to the mesh on demand. Within this framework,
geometry and attributes in different messages are then linked

1https://github.com/uos/mesh_tools
2https://www.las-vegas.uni-osnabrueck.de
3Details on this package can be found in our RosCon talk: https:

//vimeo.com/293617680

TABLE I: Mesh Tools Message types.

MeshGeometry Basic Geometric Structure of the mesh
with vertices, normals and faces.

MeshVertexColors Vertex colors of an existing mesh.
MeshVertexCosts Cost-Layer for a mesh as array of floats.
MeshMaterial A Material, defined by a color and an

optional texture ID.
MeshTexture A texture (image) associated to a

MeshMaterial by it’s ID.
MeshVertexTexCoords Texture coordinate referring to a pixel

of a correspondinng MeshTexture
MeshMaterials Combined materials and texture coordi-

nates.

Fig. 1: Transparent compression of mesh data with our tools.
When using Draco compressen, the Mesh Tools Messages are
encoded and converted to a DracoCompressedData message.
A receiver node decodes this message and converts it back
into a Mesh Tools Message that can be parsed by subscribed
nodes like RViz. This process is equivalent to sending the
original message directly.

to each other using UUIDs. This format also allows to use
meshes as a map representation for navigation with multiple
information layers (e.g. costs) added on top.

For every part contributing to the full mesh representation,
a separate message type has been defined. These basic mes-
sages are listed in Table I. For this work, the MeshGeometry-
Message is the most relevant. This message defines the basic
geometric structure of a triangle mesh using and array of
vectors representing vertices in R3, the corresponding normal
vectors and an array of vertex indices defining the triangular
structure. For evaluation, we use this set of messages for
visualization in RViz and the newly implemented compres-
sion infrastructure to transparently compress and decompress
geometries with Draco.

B. Encoding Geometry with DRACO

When attempting to transmit meshes and point clouds
between several remote agents several problems become
apparent. Most severely, such data can grow large and
quickly overwhelm the bandwidth capabilities of a remote
connection. In ROS, this results in high latencies or even
dropped messages, due to internal limitations and overflow-
ing buffers. To reduce the bandwidth demands, we integrated
the open source compression library DRACO into the ROS
message system, to enable compression of point clouds
represented in PointCloud2 messages as well as our own
Mesh Tools messages while keeping enough accuracy for
robotic applications after decompression.

https://github.com/uos/mesh_tools
https://www.las-vegas.uni-osnabrueck.de
https://vimeo.com/293617680
https://vimeo.com/293617680


Draco is a compression algorithm developed by
Google [6], enabling the compression of meshes and point
cloud data. As both data representations are different in
nature, it does not rely on a single compression algorithm
but uses multiple different techniques to optimally compress
both representations regarding compression ratio, decoding
speed and discretization losses. It therefore delivers superior
performance when compared to general purpose algorithms
like, e.g., gzip due to this specialization.

For point cloud data, Draco mainly relies on an order-
optimized encoding by rearranging the points using a kd-tree.
Positional data is discretized by a configurable number of
quantization bits. While this will naturally result in the loss of
spatial resolution, it can be fine tuned regarding requirements
for accuracy or visual quality. Draco also supports the
compression of arbitrary point attributes, making it well
suited for heterogenous data. To compress mesh topology,
Draco relies on the Edgebreaker algorithm [7]. Edgebreaker
tries to encode a mesh in the form of a spiral, encoding the
connectivty of each triangular face in a string while keeping
track of the already visited vertices and faces. These strings
are then compressed separately by the library.

Although Draco allows to fine-tune many internal parame-
ters, the the compression is mainly influenced by the number
of quantization bits used for compression (minimum value
is 1 and maximum is 31). They can be set individually
for each vertex attribute and allow to handle each attribute
differently depending on the required precision. Additionally,
a speed setting may be defined, which enables the user to
adjust the ratio of compression and decompression time and
the expected compression ratio. On compression time, the
library then chooses the optimal composition of compression
features based on these requirements. This parameterization
allows a very fine grained tuning of the compression between
optimal precision as well as fast encoding and decoding
speed on demand. For our puposes, we stuck with the
automatic compression settings and evaluated the quantiza-
tion settings, since this parameter had the most significant
influence on compression rates and geometric quality.

C. ROS Integration

The integration of Draco within the ROS message system
should be as transparent as possible without requiring any
significant conversion effort to enable a drop-in replacement
of the existing uncompressed messages as shown in Fig. 1.
Here, two possible paths of publishing a mesh geometry are
sketched. In the upper pipeline, the mesh geometry is first
sent to our Draco encoder node. This nodes converts the in-
coming message from the Mesh Tools message into Draco’s
internal data structures, taking the specified compression
parameters into account. This encoder node then generates
a byte stream that is capsuled in a DracoCompressed-
Data message. Currently this DracoCompressedData-
message consists only of a byte-array storing the encoded
draco data. Additional metadata about the encoded data,
compression settings, etc. may be added in future work.
Such a message can in principle received by all nodes that

Fig. 2: Vizualization of an annotated triangle mesh in RViz

can decode such streams. To make these Draco streams
compatible with existing nodes that support the Mesh Tools
and PointCloud2 messages, we also implemented a decoder
node that takes the Draco stream and converts it back to
the original uncompressed messages. Both nodes can be
parametrized with the desired compression ratio and accu-
racy. ROS handles the conversion between these wrapper
classes and the DracoCompressedData-messages auto-
matically using specicalized serialization traits. Therefore no
additional work beside adding these wrappers is required
to benefit from the compression. On decoding time, the
wrappers generate the previously specified messages again
for further processing.

D. Adding Face Attributes for Meshes

One major drawback when using Draco with triangle
meshes is that the library does not support the encoding of
per-face attributes directly. However for many applications
including face-based information like materials and textures
is benefitical. To support such attributes, we implemented a
work-around in our tools, that is often used in the Draco
community. For all faces, we create a set of additional “vir-
tual vertices” that are included in the encoded vertex buffer.
Knowing the number of attributes per face, an attribute array
encoded as vertex coordinates can be added to the encoded
stream. Knowing the format of these additional attributes,
the encoded information can be reconstructed and stored in
the published mesh attribute messages.

E. Mesh Visualization for RViz

RViz does not natively support mesh messages for render-
ing and user interaction. For this purpose, we implemented
a set of RViz plugins. An example of such an rendering is
presented in Fig. 2. Here, a point cloud received from a
PointCloud2 message is rendered together with an annotated
triangle mesh rendered in wireframe mode. The colors within
the mesh indicate a trafficability index, that estimates the
roughness of the representated surfaces.

IV. EVALUATION
To evaluate the benefits of integrating Draco-based com-

pression into ROS’s infrastructure, we evaluated our imple-
mentation on triangle meshes and point clouds taken with



(a) Velodyne Laser Scan.

(b) Terrestrial scan in office.

(c) Triangle mesh reconstruction of the Botanical Garden scan.

Fig. 3: Lossy compression of point clouds and meshes using Draco for Velodyne laser scans (a) and a reconstruction based
on a terrestrial laser scan taken in the Botanical Garden at the University of Osnabrck (c) with quantization levels of 25,
15 and 10 (left to right).

a terrestrial laser scanner (Riegl VZ 400i) and a Velodyne
Puck VLP-16 line scanner. To address the inherently varying
structure of different environments, we selected a set of
reference data sets that were collected in structured indoor
environments as well as cluttered outdoor scenes. All ex-
periments were performed on a Intel Core i5-4690 CPU @
3.50GHz with 8 GB RAM using Draco version 1.3.5.

The first mesh data set is a polygonal reconstruction from
a terrestrial laser scan taken in the Botanical Garden at the
University of Osnabrück. The mesh consists of 7.5 million
vertices and 11 million triangles. The orginal binary PLY
file has a size of 230 MB. This data set was selected to
represent a polygonal model of a cluttered scene without
many planar parts. In contrast to that, the second polygonal
data set contains the facade of a building. It is intended to
represent more structured environments. This mesh consists
of 2.5 million vertices, 3.8 million triangles and uses 113
MB in PLY representation.

Besides mesh data, we are also interested in Draco’s
performance in point cloud compression. To cover different
typical types of point cloud data, we also evaluated point

clouds from the terrestrial scanner and the Velodyne. The
Velodyne scan consists of 57.600 points and displays noise in
the order of magnitude of 3 cm. The reference scan was taken
in our robot lab to represent cluttered indoor environments.
The terrestrial scans were taken in an empty office, which
mostly features planar surfaces. It consists of 5 million points
and uses 127 MB in PLY format, including point normals
and intensity values. The second terrestrial scan was taken at
the market place at Bremen, Germany. It also features mostly
planar features with a medium level of clutter resulting from
driving cars, passengers and vegetation. It consists of 14
million points and is 327 MB in size, also including point
normals.

In our evaluation, we analyzed the resulting compression
rates, encoding and decoding times as well as geometric
precision using different compression levels. The general
compression level can varied between 0 und 10. In the fol-
lowing experiments we always used the highest compression
preset to achieve maximum data reduction. Besides this high
level setting, the main parameter that influences data size
and geometric precision is the number of quantization bits.



TABLE II: Mean distance errors between original and compressed data and resulting Draco stream sizes for different
quantization levels as reported by Cloud Compare.

Dataset Building Botanical Office Bremen Velodyne

Type Mesh Mesh Point cloud Point cloud Point cloud

Quantization Dst. [m] Size [kb] Dst. [m] Size [kb] Dst. [m] Size [kb] Dst. [m] Size [kb] Dst. [m] Size [kb]

Off 0.000000 70 278 0.000000 98 685 0.000000 59 000 0.000000 171 296 0.000000 301
Q5 1.300922 38 848 3.699721 3 343 0.138391 8 0.021085 4 0.194819 1
Q10 0.007919 40 698 0.030072 5 914 0.004224 1 677 0.006404 974 0.005257 22
Q15 0.000004 45 253 0.001503 17 113 0.000132 9 969 0.000200 20 932 0.000177 69
Q20 0.000273 50 626 0.000012 32 412 0.000000 18 949 0.000006 43 377 0.000006 116
Q25 0.000199 55 635 0.000056 47 436 0.000000 27 976 0.000001 65 820 0.000001 163

TABLE III: Encoding and decoding times for the selected reference data sets.

Dataset Building Botanical Office Bremen Velodyne

Quantization enc. [ms] dec. [ms] enc. [ms] dec. [ms] enc. [ms] dec. [ms] enc. [ms] dec. [ms] enc. [ms] dec. [ms]

Q5 9972.00 2367.00 24091.00 7076.00 719.84 706.78 1828.70 2043.34 3.41 3.97
Q10 9980.00 2419.00 23931.00 7082.00 1239.27 912.44 2470.75 2176.43 6.88 5.37
Q15 9964.00 2643.00 24147.00 7854.00 1439.83 1060.80 3813.87 2953.39 7.96 5.95
Q20 10210.00 2567.00 24649.00 7445.00 1463.05 1126.32 3964.70 3153.21 7.92 6.33
Q25 10427.00 3107.00 25106.00 7762.00 1521.66 1188.27 4171.64 3335.37 8.12 6.62

Fig. 4: Discretization errors in a velodyne scan (8 quantiza-
tion bits).

Here, we varied the setting between a minimum of 5 bits
and maximum 25 bits.

Qualitative results for different quantization levels are
shown in Fig. 3a. The top row shows the compression of
the Velodne scan using 25 , 15 and 10 quantization bits (left
to right). In this data set, there are only few visible artifacts
arinsing from the chosen compression. In the right picture, a
minor discretization effect is visible. This effect becomes
more apparent, when the number of quantization bits is
further reduced, cf. Fig 4. For polgonal representations,
quantization errors effect the not only the positions of the
encoded vertices, but also the topology of the meshes, as
depicted in Fig. 3c. For high quantization (25 Bits) the
structure of the presented mesh is not visibly affected, but

with reduced number of available bits, the quality of the
representation drastically decreases.

To quantify the resulting geometric errors, we analyzed
the metrical distances between the original, uncompressed
data and the decoded messages using CloudCompare [15].
The results of this experiments together with the resulting
DracoCompressedData message sizes are shown in Tab. II.
For a setting of 25 bits, the geometric error is negligible
for meshes and point clouds, while the algorithm already
achieves a high compression of about 21% and 52% for the
meshes and 52% respectively 61% for the point clouds. With
higher compression levels, the errors increase as expected,
especially for the meshes. The relatively small errors for
the point clouds can be explained by the used measurement
algorithm. Here, the distance of each point in the compressed
data set to the original data set is computed. Since the
point coordinates are discretized due to quantization, the
probability to match a data point from the higher resolution
input data is quite high, resulting in relatively small distance
errors.

In the office environment, the reported overall errors
were lower than in the more cluttered Bremen data set (cf.
Tab. II). Similarly, the error on the mesh data sets increased
compared to the structured building data sets. For cluttered
environments, the compression should therefore be reduced
to obtain acceptable results.

To conclude, for quantizations up to 15, the distance
error is still acceptable although the number of possible
point positions decreases, resulting in a higher possibility
of points being represented at the same coordinates. These
are not filtered out by the Draco library. For meshes, the
distance errors increase more significantly with less than 15



quantization bits and the measured compression is not as
high as in the point clouds.

Another important metric for practical applications is the
resulting latency. When intregrating Draco in ROS’ message-
based infrastructure, there are times needed for encoding
and decoding a Draco stream. To asses this aspect, we
measured the respective times for the chosen reference data
sets. The results are presented in Tab. III for different
quantization levels. Generally, the recorded encoding times
tend to increase a little towards higher quantization levels,
but these effects are negligble. Also, decoding seems to be
significantly faster for meshes. For point clouds, encoding
is still slower, especially for high quantization. Rather than
looking at these tendencies, putting the absolute numbers into
context, shows that – although data compressen with Draco
takes some time – the reported latencies are far below the
recording times of the sensors. The Velodyne, for example,
operates with a scanning frequency of up to 20 Hz. The
reported encoding times are between 3 and 8 ms seconds,
which allows to encode each scan in real time. A similar
argumentation can be given for the terrestrial scans, where
the scanning time is in the order of magnitude of several
minutes.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented an infrastructure to compress
triangle meshes and point clouds using Draco in ROS. We
provided the message definitions necessary to send and ren-
der mesh-based 3D geometries as well as adaptor nodes for
encoding and decoding these messages with Draco to reduce
the size of the sent messages. We provided an extensive
evaluation of this approach with respect to achievable com-
pression rates, time consumption for encoding and decoding
the data streams and geometric precision. The presented ex-
amples prove that our toolchain is able to reduce the amount
of sent data in real time with in terms of recording speed
of the used sensors on a standard laptop. Even when using
high quantization settings, the size of the sent models can
be reduced significantly without losing geometric precision.
With higher compression, the geometric precision decreases
fast, especially for meshes.

In our evaluation we also covered different types of
environments. The presented results show, that the structure
of the environment may have influence on the achievable
precision, especially in cluttered environments.

However, depending on the application context, using our
Draco integration might be a good approach to decrease
network traffic when bandwith is limited, especially when
dealing with point cloud data. With 25 quantization bits,
the compression is quasi lossless while reducing the amount
of transmitted data significantly. For point clouds, a setting
close to 15 might even by acceptable, since the quantization
error is still below 1 mm. Here, the amount of sent data can
be reduced to 12% of the initial size for the Bremen data set
and 17% in the office data set.

Within this evaluation, we always assumed good network
conditions when sending the data. In future work, it would
be interesting to evaluate how robust the generated streams
are in regard to unstable conditions with packet losses
and high latencies. Furthermore, our implementation of the
Draco compression only supports annotated meshes. The
transmission of textures within the compressed stream is
currently not supported. The presented messages and RViz
plugins however support sending and rendering of textures,
but currently, the corresponding images have to be sent in a
dedicated data stream.
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