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Abstract— This paper presents a novel approach to create
polygonal maps from 3D point cloud data. The gained map is
augmented with an interpretation of the scene. Our procedure
produces accurate maps of indoor environments fast and reliably.
These maps are successfully used by different robots with varying
sensor configurations for reliable self localization.

I. I NTRODUCTION

Robotic maps are the basis for all actions of a mobile robot.
They are needed for the integral purposes of self localization
and path planning. Since manual environment mapping is a
tedious job, the robotic mapping problem has drawn a lot
of attention in the research community. Recently, the focus
shifted from planar 2D maps towards 3D mapping. 3D maps
outperform 2D maps for many purposes, such as obstacle
avoidance, object recognition and scene understanding.

The rapid development of mobile 3D laser scanners pro-
vided the basis for mapping large areas accurately. The re-
sulting 3D maps are point clouds, sampling the surfaces of
the environments. Although the sampling density of modern
laser scanners increases, the point clouds do not represent
continuous surfaces. Related to that, the amount of collected
data becomes difficult to handle. Modern scanners produce
several millions of data points per scan. One approach to
compress the information obtained from laser scanners is to
represent the scanned surfaces by means of mathematical
descriptions or primitive shapes like triangles or quads.

Most commonly, surfaces are approximated by polygonal
meshes, particularly triangle meshes, a standard data struc-
ture in computer graphics to represent 3D objects. In this
community, various automatic mesh generation procedures
have been developed. A wide variety of applications apply
these algorithms, e.g., model generation for video games or
movies, the accurate documentation of architectural heritage
and reverse engineering. These algorithms generate highly
accurate polygonal models whose appearance has to be as
close as possible to the original object, requiring a lot of
computation power. In robotics, however, computing time is
critical. Furthermore, high level of detail is not needed inmany
robotic algorithms, such as localization.

This paper presents an approach to generate polygonal
environment maps that can be used for localization as well
as for visual inspection of the scanned environments. We
demonstrate the usability of these maps in a rescue-like
scenario: A small robot equipped with a 3D laser scanner takes
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several scans of an unknown environment. The acquired scans
are registered into a global coordinate system by a 6D SLAM
algorithm. Based on the resulting point cloud, a polygonal map
is computed using a modified Marching Cubes algorithm [9].
This map is used by another, larger robot to localize itself in
the mapped environment.

Our solution focuses on reducing the computational costs
and exploits the inherent structure of scenes scanned by a
mobile robot: Commonly, robotic mapping operates in envi-
ronments with mainly planar surfaces. This planarity constraint
is utilized by the Marching Cubes algorithm. The resulting
map consists of planar polygons that are labeled as walls,
floors and ceilings. The geometrical information can be used
for localization using ray tracing techniques. Besides these
algorithmic advantages, the surfaces can be rendered with
standard textures according to their classification to deliver
the operator a more realistic impression of the explored area
than the original point cloud.

In the remaining text, section II presents previous and
related work, section III describes the map generation and
labeling algorithm. Sections IV and V present experimental
results and an application example. Section VI concludes.

II. RELATED AND PREVIOUS WORK

A. Robotic Mapping

Mapping algorithms differ in the type of maps used. State
of the art for metric maps are probabilistic methods that use
two dimensional grid maps, where the robot has probabilistic
motion and perception models [15]. Localization then works
by integrating these two distributions with a Bayes filter,
e.g., Kalman or particle filters. Closed loops, i.e., a second
encounter of a previously visited area in the environment,
play a special role in mapping. Once detected, they enable
the algorithms to bound the error by deforming the already
mapped area such that a topologically consistent model is
created.

Building 3D maps by means of 3D laser scanners requires
to have some version of geometrically consistent 3D point
cloud of the environment. In our work, we use a 6D SLAM
method and software, described, e.g., in [13]. The 6D SLAM
takes 3D scans of the complete environment and registers them
into a globally consistent and correct 3D map. Registration
has to compensate the fact that every single scan pose is
given in 6 degrees of freedom (DoF), i.e., registration has
to consider three translation and three rotation dimensions.
Our SLAM method uses an optimized ICP implementation
for online registration based on odometry estimation. Closed
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Fig. 1. Mapping system overview. The input of our algorithm is a globally
consistent 3D point cloud acquired by a mobile robot solvingSLAM.

loops in the given trajectory are detected in an offline post-
processing step that distributes the pose differences using a
3D version of Lu and Milios’ technique [3], [10].

B. Surface Reconstruction

For surface reconstruction from point cloud data, two main
approaches are in use: Detection of primitive shapes or mesh
based approaches. Most shape based approaches use feature
descriptors to detect instances of predefined objects, e.g., [6].
Other approaches use Hough transformations to detect planar
surfaces in 3D laser scans [2].

Mesh based approaches create triangle meshes to approx-
imate the scanned surfaces. The de-facto standard is the
Marching Cubes method introduced by Lorensen et al. [9].
This algorithm sub-divides the scanned volume into cubic
cells. For each cell the intersections between the cell edges
and the surface are calculated. Pre-calculated surface patterns
are then used to generate a local triangle mesh approximation.
To interpolate the intersections, implicit continuous surface
representations like planes or splines are fitted to the local
data using least squares fits [1], [8].

A feature of the Marching Cubes algorithm is that it
produces far more triangles than are needed to represent an
object. Hence, several mesh simplification algorithms have
been introduced over the past years. Most of them define error
metrics that indicate the error that a certain operation causes to
the model, i.e., the removal of an edge [5], [11]. To optimize
the model, the edges causing minimal error to the topology
are removed iteratively. Since after each edge removal new
vertices have to be inserted into the mesh, the initial topology
can be altered.

Mesh based surface representations are flexible and able
to approximate arbitrary surfaces since they are not limited
to predefined object classes. In the following section we
will present a fast and reliable mesh based map generation
procedure that is based on Marching Cubes and Hoppe’s
interpolation method.

III. T HE POLYGONALIZATION PROCEDURE

Fig. 1 shows the basic architecture of our mapping system.
The single laser scans are registered using ICP and loop
closing techniques. After the whole scene is scanned, the
output of the 6D SLAM process (i.e. a consistent point cloud)
is post-processed to a polygonal map.
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Fig. 2. The construction of the signed distance function as described by
Hoppe. For each data point, a so called “tangent plane” is calculated by a
least square fit to itsk nearest points (left). Each plane is defined by its
centroido and surface normaln (middle). The signed distance of a query
point is the distance of its projection onto the nearest tangent planed(qi)
and itself. The sign depends on which side of the surface the query point is
(right).

The polygonalization procedure itself consists of three dif-
ferent steps: First, a triangle mesh, based on a consistent 3D
point cloud, is generated using the Marching Cubes method.
This initial mesh is then optimized by detecting connected pla-
nar surfaces. The triangles of such areas are fused to polygonal
shapes. This way a compact 3D polygonal representation of
the scanned environment is created that is suitable for robotic
purposes like localization. After simplification the extracted
polygons are finally semantically classified into the categories
“floor”, “ceiling” and “wall”. These three steps detailed inthe
following sections.

A. Initial Mesh Generation

In the first step, we generate a triangle mesh approximation
of the scanned surfaces using the Marching Cubes method and
Hoppe’s distance function [8]. The idea of Hoppe’s approach
is to assign a tangent planeT (pi) to each data point using a
local least squares fit to thek nearest points (k-neighborhood).
These fit planes are represented by the center of gravityoi of
the k-neighborhood and the surface normalni:

T (pi) = oi · ni.

The signed distance of any spatial pointp is defined as

dT (p) = s(p) · d(p, T ),

where d(p, T ) is the distance of this point to the nearest
tangent plane

d = (p− oi) · ni

ands(p) is the sign of the signed distance function according
to the relative position ofp. This sign is determined by using
the orientation of the normal of the tangent plane. Ifp·ni > 0,
thens(p) = +1, otherwises(p) = −1. The whole process is
illustrated in Fig. 2.

To build a system of equations for plane fitting using
a least squares fit, at least3 data points are needed. In
practice, a larger number is used depending of the density and
noise of the data set. Two issues remain to be solved: First,
the estimation algorithm has to compute consistent normal
orientations. In our application, where the single 3D scans
are taken by a mobile robot, the solution to this problem is



Fig. 3. An example of the varying point density in the used laser scans. The point density in the center of the scene is significantly higher than in the outer
regions. In these areas the data points are aligned on lines,or arc-shaped.

Fig. 4. Influence of the normal estimation quality. Consistent normals result
in connected surfaces (right) while inaccurate estimations produce holes in
the triangle mesh (left).

trivial: All normals are oriented towards the scanning position.
A second problem is that the resulting distance function is
not differentiable per se. The latter issue is not critical in this
application, since the scanned environments are not necessarily
smooth, due to sharp angles between, e.g., walls and floors.
In fact, in robotics we exploit the ability to represent sharp
features and the computational efficiency of Hoppe’s approach.

The quality of the fitted tangent planes (and the correspond-
ing surface normals and surface approximations) strongly
depends on the number of chosen approximation pointsk

(cf. Fig. 4). The choice ofk is essential for the quality of
the calculated normal. The smaller the value ofk, the lower
the needed processing time, since fever tree traversals are
necessary. However, lowk values are sensitive to noise. Higher
values may compensate sensor noise in the approximation
process, but they increase the processing time and might lead
to wrong results, because sharp features will be “smoothed”
out. Handling real 3D laser scanner data as input shows
another difficulty: With increasing object distance the point
density decreases. In the case of our tilted 2D laser scanner,
this results in line or arc-shaped artefacts of data points at
high distances (cf. Fig. 3). These artefacts will cause, in turn,
incorrect results in the fitting process since the orientation of
the calculated plane is solely dependent on local noise.

Fig. 5. Adaption of the number of nearest neighbors in regions with low
point density. Ifk is too small, all data points will be on a straight line. In
this case the fit of a plane will fully depend on the local noiseof the data.
To ensure a good fit, we analyze the shape of the bounding box.

Fig. 6. Comparison between normal calculation withoutk adaption and
interpolation (left) with the adaptive algorithm (right).

Thus we aim to find ak with a value as small as possible that
still allows an accurate approximation. Therefore, we adapt
k dynamically to the data density. To detect ill formedk-
neighborhoods, we analyze the shape of their bounding boxes.
Critical configurations will result in elongate bounding boxes.
If we detect such a configuration,k is increased until this
shape criterion is fulfilled. Since the laser scanner shows alot
of sensor noise, the resulting normals are still fluctuatingto
some degree, although their basic alignment is consistent.To
reduce this effect, we average all normals with their neighbors.
Fig. 6 shows the results of these optimization steps.



B. Extraction of Planar Surfaces

The aim of the second processing step is to detect pla-
nar areas in the mesh and to represent them as polygons.
The triangles in the initial mesh are stored in a half edge
representation. This data structure allows to efficiently detect
all neighboring triangles of any triangle in the mesh. The
simplification algorithm fuses patches in the mesh that are
connected and share the same surface normal. The algorithm
starts with an arbitrary triangle and recursively checks, if
its surrounding triangles have a similar surface normals. The
recursion is carried on until a bend in the surface is detected.
The edge between such triangles marks a boundary of the
initial surface. All these edges are collected and later fused
using a line following algorithm to create an optimal polygonal
representation (cf. Algorithm 1). Fig 7 shows the results ofthis
process.

Algorithm 1 The mesh simplification algorithm. Faces within
the mesh that have similar surface normals are detected. The
border edges of these planar areas are fused to polygons.

function SIMPLIFY
for all facesdo

current face← visited
FUSE(current normal, current face, currentList)
borderLists← currentList
CREATEPOLYGON(border list)
currentList← empty

end for
end function

function FUSE(start normal, current face, list of borders)
current face← visited
for all neighbors of current facedo

angle← start normal· neighbor normal
if angle< ǫ and neighbor not visitedthen

FUSE(start normal, neighbour, listOfBorders)
else

list of borders← border edge to neighbor
end if

end for
end function

C. Semantic Labeling

Since architectural shapes of environments follow standard
conventions arising from tradition or usage [4], we exploitthis
knowledge for semantic labeling of the polygonalization of

Fig. 7. Detailed view of a room corner. The triangles in the initial mesh are
removed, only the borders of planar surfaces remain.

indoor environments. The used knowledge describes general
attributes of the domain, i.e., architectural features as plane
walls, ceilings and floors.

The planarity constraint used to generate the polygonal
representation is exploited to label the found surfaces by an-
alyzing the surface normal orientations. In orthogonal scenes,
the orientation of the normals is nearly discrete: Floor and
ceiling normals point in the direction of they-axis, walls
are perpendicular to them. Using these considerations, we are
able to label the found surfaces according to these categories.
With textured rendering, realistic reproductions of the scanned
environments can be created (cf. Fig. 8).

D. Implementation Considerations

The performance of the initial mesh generation procedure
strongly depends on the efficiency of thek-neighbor search.
The same problem is addressed during ICP scan matching
in the SLAM 6D process. Furthermore the surface normal
estimation for each point is a purely local operation and can
be done independently for each data point, i.e., in parallel.
Therefore we use search trees that are optimized for parallel
queries. See [7], [12] for implementation details.

IV. EXPERIMENTAL RESULTS

Fig. 9 shows an example of our automated polygonalization
process. The left picture displays a registered point cloudgen-
erated from 12 single laser scans taken in an empty classroom.
The middle picture is the initial triangle mesh based on the
input data, created by our Marching Cubes implementation.
The right picture shows the polygonal representation gained
from the triangle mesh. The procedure has automatically
extracted a polygonal representation of the large planes inthe
initial mesh without changing the geometry of the model. Note
that in areas with high curvature the triangle representation is
preserved, since these surfaces are not fused by our method.

Fig. 8. Example of semantic labeling. Top row: The point cloud (left) was
captured by the Kurt3D robot. In the reconstruction (right)the polygons are
rendered with colors corresponding to their classification. Bottom: Another
example. This time textures were added according to the surface classification.



Fig. 9. The three steps of 3D map generation: The first step is to generate a consistent 3D point cloud of the robot’s environment (left). This cloud is used
to create a regular triangle mesh, using the Marching Cubes algorithm (middle). The third step is to detect planar surfaces in the mesh. The borders of these
regions deliver a polygon representation of the environment (right).

TABLE I

RUN TIME AND COMPRESSION FOR THE DATASETS SHOWN INFIG 8

(SINGLE SCAN) AND FIG. 9 (MULTIPLE REGISTERED SCANS).

Dataset No. Points Initial Faces No. Polygons Time

Single Scan 271,288 66,374 23,670 5.47 s
Multiple Scans 1,834,599 44,740 3,029 8.25 s

TABLE II

RUN TIME COMPARISON BETWEEN OUR OPTIMIZATION ALGORITHM AND

OTHER MESH REDUCTION METHODS(REMOVAL OF THE SHORTEST EDGES

AND USING QUADRIC ERROR METRICS[5]).

Dataset Map Gen. Shortest Quadric Compression

Single Scan 0.25 s 1.02 s 2.37 s 65 %
Multiple Scans 0.47 s 1.72 s 2.35 s 39 %

Table I displays the running times of the map generation
procedure for the presented examples. The experiments were
performed on an Intel Core2 Quad Q6600 with 4 GB RAM.
Due to the parallel implementation we were able to achieve a
load of nearly 100% on this machine. The normal estimation
procedure scales well with the number of used threads. The
first row shows the statistics for a single scan taken with
our Kurt3D robot (see [13] for technical details), the second
row the results for a set of 12 registered scans. In both
cases, the number of initial polygons (triangles) was reduced
considerably. Even in case of the large dataset (about 1.8
million points) the running time was lower than the time
needed to acquire the scan data.

Additionally, we have compared our method to standard
mesh reduction algorithms (see Table II). To create standard
triangle meshes from our optimized representation, we used
the OpenGL tesselator to re-triangulate the boundary polygons.
Afterwards, we measured the time needed by the iterative
methods to achieve an equal compression. In all tests, our
method was faster, but did not change the geometry of the
initial triangle mesh.

To evaluate the accuracy of the generated map, we have
compared the reconstructed geometry shown in Fig. 9 with
manual measurements in the original environment of ceiling

TABLE III

COMPARISON OF THE ORIGINAL AND RECONSTRUCTED GEOMETRIES.

Ceiling Width Depth Door Width

Original Dimensions 2.99 m 5.89 m 7.09 m 0.94 m
Reconstruction 2.96 m 5.85 m 7.06 m 0.90 m

height, wall width and height of a room and door width. The
results are shown in Table III. The reconstructed values show
a deviation of about 3 to 4 cm from the original values due to
interpolation errors and noise in the original scans. Compared
to the size of the mapped area these inaccuracies are negligible.

V. A PPLICATIONS

We have tested the usability of our 3D polygonal maps
for localization purposes in different contexts. One example
was the LiSA (Life Science Assistant) project. In this project
methods for localization in 3D polygonal maps were developed
and successfully applied. The used robot is equipped with
several laser scanners at different orientations, that alluse the
same polygonal map. Localization is done using particle filters.
Pose estimations for each sensor were generated based on
raytracing in this model [14]. Fig. 9 shows the benefits of using
several sensors: The left picture shows the positions of some of
the laser scanners. The right picture compares the localization
results between conventional 2D self localization (yellow) and
the 3D approach (green). The pose estimation becomes more
accurate when the additional information derived from the 3D
polygonal map is used.

Furthermore we were able to apply a similar technique
to realize real time 6D localization of a mobile robot with
a PMD time-of-flight camera. For this experiment a pinhole
camera model was used together with raytracing to generate
an expectation of incoming sensor data under a given pose
estimation. The expected data was then transformed to match
the real data via ICP. This transformation was finally used to
correct the initial estimation. [16] reports preliminary results.

These examples show that 3D maps can improve the results
of localization and can be used with different kinds of sensors.
Our current research focuses on tracking full 6D trajectories
using IMUs and multi modal pose estimations.



Fig. 10. Application example: Raytracing for localizationin polygonal maps. The used robot us equipped with several laser scanners that point in different
directions. A Raytracing technique is used to calculate a sensor model (left). The right figure shows the improvement of the self localization. The yellow
area marks the estimated pose error without the use of the tilted scanners. The green area shows the result using the additional information from the other
scanners. The localization improves considerably.

VI. CONCLUSION AND FUTURE WORK

This paper has presented a novel approach to extract polyg-
onal maps from a 3D point clouds. Such point clouds are
the common output of a 3D mapping system. As several
approaches from the field of computer graphics cannot be
used in robotics, due to sensor noise and time constraints, we
developed a simple and robust method to create practically
usable 3D polygon maps. The mapping algorithm exploits the
inherent scene structure of indoor environments. The planarity
constraint is fulfilled in most robotic applications, including
rescue scenarios (consider biological or chemical accidents).

The usability of the generated maps was shown for several
localization tasks using the same map, but different kinds of
sensors. Future work will focus on the following aspects:

• Fuse the purely mesh based approach with object recog-
nition methods. Our simple classification according to
planarity can be used to isolate non-planar regions in
the scans, where potential objects of interest are located.
Recognized objects (like chairs, tables, etc.) could then
be replaced with pre-calculated models.

• Use the gained geometric information to improve the
sensor data, e.g., fill laser shadows.

• Improve scan matching. Our 6D SLAM procedure cur-
rently depends on point-to-point references only. Using
additional geometric information gained from the polyg-
onalization could improve the scan matching results.

REFERENCES

[1] M. Alex, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, andC. Silva.
Computing and Rendering Point Set Surfaces InIEEE Trans. Comp.
Graphics Vis., 8(4), 2002

[2] D. Borrmann, J. Elseberg, K. Lingemann, and A. Nüchter.A Data
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