
Accepted to RSS Workshop on Semantics for Robotics: From Environment Understanding and Reasoning to Safe Interaction 2024

Mesh-based Object Tracking for Dynamic Semantic
3D Scene Graphs via Ray Tracing

Lennart Niecksch∗, Alexander Mock†, Felix Igelbrink∗, Thomas Wiemann‡, Joachim Hertzberg∗†
∗German Research Centre for Artificial Intelligence

Plan-based Robot Control, Osnabrück, Germany
Email: {firstname.lastname}@dfki.de

†Osnabrück University, Institute of Computer Science
Knowledge-based Systems, Osnabrück, Germany

Email: {amock, jhertzberg}@uos.de
‡Fulda University of Applied Sciences, Department of Applied Computer Science

Robotics in Computer Science, Fulda, Germany
Email: thomas.wiemann@informatik.hs-fulda.de

Abstract—In this paper, we present a novel method for 3D
geometric scene graph generation using range sensors and
RGB cameras. We initially detect instance-wise keypoints with
a YOLOv8s model to compute 6D pose estimates of known
objects by solving PnP. We use a ray tracing approach to track
a geometric scene graph consisting of mesh models of object
instances. In contrast to classical point-to-point matching, this
leads to more robust results, especially under occlusions between
objects instances. We show that using this hybrid strategy leads
to robust self-localization, pre-segmentation of the range sensor
data and accurate pose tracking of objects using the same
environmental representation. All detected objects are integrated
into a semantic scene graph. This scene graph then serves as
a front end to a semantic mapping framework to allow spatial
reasoning.

I. INTRODUCTION

In robotics, semantic 3D scene graphs can be used for
navigation and interaction within an environment by helping
robots understand and interact with their surroundings in a more
human-like manner. Such scene graphs also allow for structured
reasoning about the contained entities [1]. Constructing scene
graphs from images or videos involves significant challenges,
including accurately detecting objects, determining their at-
tributes, and identifying the complex relationships between
them under various conditions. Advances in deep learning,
especially in areas like object detection and relation prediction,
have significantly contributed to progress in generating more
accurate and detailed semantic scene graphs. Tracking of the
geometry and poses of known object instances over time is the
most important step to create and update such scene graphs
and connect the observations with spatial and background
knowledge to allow reasoning.

In this paper, we present an approach to track the poses and
spatial relations of object instances of known classes to create
and update a geometric 3D scene graph. For object detection,
we use a YOLOv8 [2] model that was trained to detect objects
and 3D bounding box keypoints in camera data. These rough
pose estimates are refined by matching 3D reference mesh

models to range sensor data. For that, we use a ray-tracing
approach to find correspondences between the meshes and the
actual sensor data. The detected objects are inserted into the
scene graph and tracked over time. In addition to building and
updating the scene graph, we add the detected instances into
our semantic mapping framework SEMAP [3] to automatically
determine spatio-semantic relations such as on, left-of etc. In
preliminary experiments, we present first results to evaluate our
approach in a real-world application example on a modified
PAL Robotics Tiago robot.

II. RELATED WORK

Research in 6D pose estimation of objects has seen sig-
nificant advancements, leveraging various techniques from
classical computer vision to deep learning [4]–[8], while
other work focuses on instance segmentation in 3D scenes
[9]–[11]. Generating scene graphs is typically accomplished
using comprehensive scene information in the form of dense
point cloud or mesh data, often obtained from simultaneous
localization and mapping (SLAM) techniques [12]–[15].

Kimera [14] is an approach to for real-time (SLAM) and
3D scene graph semantic reconstruction tailored for RGB-D
data. It focuses on creating a semantic scene graph of static
objects of pre-known classes based on a TSDF representation
of the environment. Building up on the Kimera scene graph,
Hughes et al. [16], [17] developed Hydra, a system that is able
to segment, insert and track objects in the scene graph. This
scene graph is a layered representation of spatial concepts at
different levels of abstraction (i.e. places, rooms, buildings)
and thus allows for further spatial reasoning, such as deriving
the room types from the objects therein as presented in [18].
However, this scene graph is still derived from a static map and
while it is updated to changes occurring during the mapping
process (i.e. loop closures), it is unable to adapt the changes
once the mapping is completed and thus cannot track dynamic
objects nor react to changes made during operation such as
robotic manipulation.



Voxblox++ [15] provides an instance-aware semantic map-
ping, which segments the scene into individual instances
of semantic objects detected by a Mask R-CNN network.
In contrast to Kimera, the objects are treated as individual
geometries and thus can be tracked individually in the scene.
Because Voxblox++ does compute a semantic scene graph, it
cannot be used for further spatial reasoning on the detected
instances.

In [19], Deeken et al. introduced SEMAP as a semantic
mapping framework to model and infer spatial relations
between objects and to reason about them. This framework
was successfully used in practical applications, e.g., to infer
the spatial relations of moving machines in a maize harvesting
campaign [20]. However, inferring and updating the relations
in this work is not real-time capable.

3D meshes are a standard data structure to represent real-
world objects. In contrast to Voxel/TSDF-based representations
they are memory-efficient and CAD models of a broad range
of common world objects are available or can be reconstructed
using 3D scanners. Dedicated hardware, such as NVIDIA’s
RTX make 3D meshes well-suited for real-time computation of
spatial operations, such as ray intersection tests. Consequently,
they have recently been adopted as a map format for various
robotics applications, including SLAM [21]–[23], map-based
localization [24], and path planning for navigation [25]. Integrat-
ing multiple meshes within a geometric scene graph enables an
accurate representation of a real-world scene including multiple
objects.

In this work, we demonstrate a system that shares the same
geometric scene graph consisting of meshes for both map-based
robot localization as well as dynamic object pose tracking. Our
main contribution is the scene graph creation with dynamic
objects using RGB images as priors and Mesh-ICP [24] to
refine their poses with depth sensor measurements. The tracked
6D object are fed into SEMAP to connect the geometric
information with semantic background knowledge. Our proof-
of-concept shows that this approach enables spatio-semantic
reasoning in dynamic scenarios with moving objects, in our
case a workbench scenario, where humans and robots interact.

III. SCENE GRAPH GENERATION

A. System Setup

Our test platform is a Tiago robot by PAL-robotics equipped
with a ASUS Xtion camera in the head that produces RGB-D
images at 30 fps and 640x480 pixel resolution (see Fig. 1).
We extended the stock setup with a NVIDIA Jetson Orin NX
and a Velodyne VLP-16. The Jetson operates with Ubuntu 20,
Jetpack 5 and ROS1 Noetic to ensure message compatibility
with Tiago’s base. Despite this old software stack, all developed
software modules are compatible with ROS2.

To build a map of our lab environment we used a high-
resolution laser scanner to capture the static parts of the
environment. We then reconstructed triangle meshes from the
captured point cloud using LVR2 [26].

The static parts of the scene, i.e. the parts of the building, that
are used for 3D self-localization using MICP-L [24] can be seen

Figure 1: Our test platform Tiago inspecting a table top scene
containing multiple objects.

in the bottom picture in Fig. 3. MICP-L is a part of the RMCL
library, which internally uses Rmagine [27], an optimized
library for spatial operations in 3D geometric scene graphs,
such as nearest neighbor searches or ray intersection tests.
Rmagine implements all functionality to create and update such
3D geometric scene graphs in real-time. Rmagine has a strong
focus on robotic applications and therefore offers interfaces
to different CPU and GPU-based acceleration techniques. It
currently implements two backends: Embree [28] for CPUs
and OptiX [29] for Nvidia GPUs - optionally accelerated by
RTX units.

B. Object Detection and Tracking

Our approach for the initial object pose estimation is similar
to [4]. First, the corners and centers of the detected bounding
boxes are predicted in image space (see Fig. 2a). The 6D pose
is then estimated by minimizing the reprojection error of the
known correspondences and dimension of the object bounding
boxes using perspective-n-point (PnP). For fast prediction of
the corners and centre points of object bounding boxes, we
use a YOLOv8s [2] keypoint model trained on 54000 synthetic
images generated with NVISII [30]. The objects and their 3D
meshes are described in detail in [31].

As the initial pose estimate solely relies on 2D image data,
errors – especially in depth and slight rotational ones – are
likely. Similar to other methods that use ICP on depth data to
refine the initial guess, we determine correspondences for pose
correction. Instead of determining them through point-to-point
matching, e.g., by sampling the surface of the original models,
we incorporate the sensor model and the known geometries
directly.

The initial pose and the geometric priors are used to build
an Embree scene graph [28] with Rmagine [27], containing
individual geometric instances for each object, allowing to
efficiently simulate the sensor using ray tracing. With the
exact camera model of the depth camera, correspondences
between the simulated and real sensor data are determined
along the direction of the of a hitting ray as shown in Fig. 2b.
Using the proper sensor model, the pose and the known
geometries (meshes) of detected objects, naturally results in
robust correspondences with respect to the previously described



(a) (b) (c)

Figure 2: a The scene and the detected keypoints and boxes. b The initial pose estimates (green) and the ray tracing correspondences (purple).
c The refined poses of the object instances (blue).

errors. Additionally, the method accounts for (partial) occlusion
between different instances by design.

As a result, each sensor data point Di(P ) is pointing at
a corresponding model point Mi(P ), referencing its surface
normal Mi(P ), and an instance/object id Mi(O) with i ∈ [0, n],
or in short Di(P ) → Mi(P,N,O). We transform this into a
set of correspondences per object instance: Oi : D(Pi) →
M(Pi, Ni, Ci). We discard correspondences based on a dis-
tance threshold which not only removes false assignments
around the boundary, it additionally enables us to effectively
prune false positives from the model. The distance between each
set of correspondences is individually minimized using [32],
resulting in a refinement for the initial guesses, which are used
to update the instances transformation in the scene graph. This
intrinsically minimizes the distances between the 3D models
and the sensor data and achieves high overall accuracy as
shown in Fig. 2. The procedure is then repeated. To better
account for uncertainty and occlusions, we plan to integrate
a Kalman Filter per tracked object in future work. This also
helps when the object detector fails, because the information,
that the simulation step still led to valid correspondences based
on the filter’s hypothesis, is integrated as well. Inversely, tracks
may be safely pruned with a high probability if the latter failed
and no occlusion is given.

Besides being robust, our method is also computationally
efficient. With the initial pose guess of the robot, we start to
find correspondences within a large scene. As described in
MICP-L [24], this has a run time complexity of O(n · log(m))
with n being the number of measurements considered and m
being a general parameter for the map’s size, which can be
either the number of primitives in a mesh or the number of
meshes with the same number of faces. Since the number of
measurements per scan is constant, the overall run time only
changes logarithmically with the map size.

Splitting the correspondences per object and computing
the transformation parameters is linear w.r.t. the number of
measurements, therefore it is not directly increasing with larger
maps. The actual update of the scene depends on how many
objects are found with the correspondence search and thus
depends on the situation. Assuming we have a large scene with
100 rooms, each room consists of 10 objects to be tracked;
1000 objects in total. The robot determines the correspondences
with the scene, corrects the robot’s pose, and starts to track

the visible objects; all with a O(log(m)) complexity. Since
the correspondences yield only the 10 objects placed in the
same room as the robot, the problem is reduced to track 10
objects out of 1000. If we escalate this example to even larger
worlds, e.g., having 1 million rooms, the number of tracked
objects remains 10. Only the correspondence finding procedure
increases, however only with a complexity of O(log(m)).

C. Sensor data pre-segmentation

While we track parts of the scene graph using sets of
correspondences, some measurements remain unassigned to
any object, e.g., if a certain distance threshold is exceeded.
Those uncategorized measurements occur if an object is visible
in the sensor data that is neither detected by YOLO nor is
existing anywhere nearby in the current scene. Such a situation
is visualized in Fig. 3. This pre-segmentation of the unknown
helps subsequent object detectors to recognize objects faster
and more reliably, as the number of measurements is reduced
to a minimum. In the scene of Fig. 3 we were able to reduce
an Velodyne VLP-16 scan from 25287 valid measurements to
3515 points, i.e., a reduction of ∼86% without losing relevant
information at all.

D. Integration with qualitative spatial reasoning

As a proof of concept, we input the recognized and tracked
objects into SEMAP [3] for instance-based spatial reasoning.
Fig. 4 shows the result of a query for objects that are on top
or left of other objects with respect to their local coordinate
systems. Such information can be used to build hierarchical
semantic scene graphs, or can directly be input into symbolic
task planning algorithms. In future work, we plan to use the
same scene graph structure used for pose refinement for the
derivation of topological relations in both the tracking front end
and the semantic backend. This would have several benefits.
First, the graph structure is already continuously updated in the
refinement steps. Second, the underlying acceleration structures
allow for distance and collision queries and have already
proven to be suitable for live updates and computations on
full resolution mesh geometries. Additionally, Rmagine allows
for perspective adjustment, e.g., to clarify directional spatial
queries. For example, without semantics, a cup (c) that is
standing in a cupboard (b) is just a cup and a cupboard, both
with transforms relative to the scene root (m): (T c

m, T t
m). Now,

if there was the actual semantic relation that the cup stands in



Figure 3: By tracking the geometric scene graph we can inversely
determine all the points that are unknown and use it as pre-
segmentation for other methods. The left image shows the Tiago robot
operating inside a real environment with a matched scene graph in the
right image, which is only composed of walls and doors. The points
that are not considered for tracking (red) give a pre-segmentation of
the sensor data that can help subsequent object detectors to produce
more reliable results.

Figure 4: Result of SEMAP queries on (red) and left-of (cyan) using
the refined object poses. Best viewed in color. The red box shows the
top projection abstraction of the bottom powerdrill and the cyan box
the left projection abstraction of the multimeter.

the cupboard, the transformations/connections in the Rmagine
scene can be updated to (T c

t , T
t
m) by using all the already

existing information T c
t = T t−1

m · T c
m. Mathematically, both

sets of transformations represent the same. These improvements
are the foundation for a continuous monitoring of 3D spatial
relations. This would enable the possibility of live 3D spatial
and temporal semantic reasoning, e.g., via recurrent neural
networks or pattern based complex event processing like [33].

IV. PRELIMINARY EXPERIMENTS

Since we want to run most of the computations on edge and
ensure real-time operation, it is important to keep the run times
low. Therefore, we measured the run times for each individual
module during the experiments in our research building. The

Table I: The properties of the meshes of the dynamic objects we
used in our experiments.

Object Faces Vertices
multimeter 100338 33446
screwdriver 26682 8894
materialbox 13617 4539

klt3147 14124 4708
relay 9312 3104

dynamic objects in the scene graph were presented in [31].
1824x16 measurements are used from the Velodyne LiDAR and
640x480 from the Asus Xtion camera; 336384 measurements in
total. The static parts of the scene consist of 411 698 triangles
and 411 698 vertices with a footprint covering an area of
2986.6 square meters.

By exporting the YOLO model as a TensorRT engine, we
achieved an average inference time of 15ms per image on the
Jetson board, however it consumes a majority of the available
GPU resources. Further optimizations include quantization,
which allows to use the boards DLAs, which will accelerate
inference time and free up GPU resources. Our proof of
concept implementation for the scene graph already results in
1.8Hz on the Jetson without any further optimization, when
doing 4 iterations of ray tracing on the full resolution mesh
models (cf. Tab. I) per frame with 10 Umeyama optimizations
for each individual object instance. Thus it is still being
considered fast by the criteria of the BOP Challenge [34],
with a run time less than 1 s per frame. The current ray tracing
implementation, which takes up the majority of the run time,
is limited to Rmagines Embree backend running on the CPU.
Using Rmagines OptiX backend or Embree with SYCL support
should drastically improve performance for ray tracing, as
shown in [24].

V. CONCLUSION AND FUTURE WORK

In this paper, we presented an approach to detect and
track objects in a geometric scene graph. We connected this
front end to a semantic back end to allow spatial reasoning.
Overall, this approach yields good natural tracking results
and is expected to significantly reduce the computational cost
when tracking multiple objects. This would be amplified by
switching to Rmagine’s GPU accelerated backend. Future
work focuses on the efficient realization of spatio-semantic
queries utilizing the same underlying acceleration structures
and representation, which would allow building and updating
hierarchical semantic scene graphs and temporal reasoning in
live systems. Additionally we plan to evaluate our presented
method both on different 6D pose estimation and tracking
benchmark data sets, with different initial pose estimators.

ACKNOWLEDGMENT

This work is supported by the ExPrIS project through a grant
from the German Federal Ministry of Education and Research
(BMBF) with Grant Number 01IW23001.

The DFKI Niedersachsen (DFKI NI) is sponsored by the
Ministry of Science and Culture of Lower Saxony and the
VolkswagenStiftung.



REFERENCES

[1] I. Armeni, Z.-Y. He, A. Zamir, J. Gwak, J. Malik, M. Fischer, and
S. Savarese, “3D Scene Graph: A Structure for Unified Semantics, 3D
Space, and Camera,” in 2019 IEEE/CVF International Conference on
Computer Vision (ICCV). IEEE, pp. 5663–5672. [Online]. Available:
https://ieeexplore.ieee.org/document/9008302/

[2] G. Jocher, A. Chaurasia, and J. Qiu, “Yolo by ultralytics,” 1 2023.
[Online]. Available: https://github.com/ultralytics/ultralytics

[3] H. Deeken, T. Wiemann, K. Lingemann, and J. Hertzberg, “Semap
- a semantic environment mapping framework,” in 2015 European
Conference on Mobile Robots (ECMR), 2015, pp. 1–6.

[4] J. Tremblay, T. To, B. Sundaralingam, Y. Xiang, D. Fox, and
S. Birchfield, “Deep object pose estimation for semantic robotic grasping
of household objects,” in Conference on Robot Learning (CoRL), 2018.
[Online]. Available: https://arxiv.org/abs/1809.10790

[5] W. Kehl, F. Milletari, F. Tombari, S. Ilic, and N. Navab, “Deep
learning of local rgb-d patches for 3d object detection and 6d pose
estimation,” in Computer Vision–ECCV 2016: 14th European Conference,
Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part
III 14. Springer, 2016, pp. 205–220.

[6] G. Wang, F. Manhardt, J. Shao, X. Ji, N. Navab, and F. Tombari, “Self6d:
Self-supervised monocular 6d object pose estimation,” in Computer
Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part I 16. Springer, 2020, pp. 108–125.

[7] Y. Wu, Y. Zhang, D. Zhu, Y. Feng, S. Coleman, and D. Kerr, “Eao-slam:
Monocular semi-dense object slam based on ensemble data association,”
in 2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2020, pp. 4966–4973.

[8] Y. Su, M. Saleh, T. Fetzer, J. Rambach, N. Navab, B. Busam, D. Stricker,
and F. Tombari, “Zebrapose: Coarse to fine surface encoding for 6dof
object pose estimation,” arXiv preprint arXiv:2203.09418, 2022.

[9] A. Dai and M. Niessner, “3dmv: Joint 3d-multi-view prediction for 3d
semantic scene segmentation,” in Proceedings of the European Conference
on Computer Vision (ECCV), September 2018.

[10] A. Dai, D. Ritchie, M. Bokeloh, S. Reed, J. Sturm, and M. Nießner,
“Scancomplete: Large-scale scene completion and semantic segmentation
for 3d scans,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018, pp. 4578–4587.

[11] J. Hou, A. Dai, and M. Nießner, “3d-sis: 3d semantic instance segmen-
tation of rgb-d scans,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2019, pp. 4421–4430.

[12] D. Rozenberszki, O. Litany, and A. Dai, “Unscene3d: Unsupervised
3d instance segmentation for indoor scenes,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2024, pp. 19 957–19 967.

[13] J. Wald, H. Dhamo, N. Navab, and F. Tombari, “Learning 3d semantic
scene graphs from 3d indoor reconstructions,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 3961–3970.

[14] A. Rosinol, M. Abate, Y. Chang, and L. Carlone, “Kimera: an
Open-Source Library for Real-Time Metric-Semantic Localization and
Mapping,” in 2020 IEEE International Conference on Robotics and
Automation (ICRA), 2020, pp. 1689–1696.

[15] M. Grinvald, F. Furrer, T. Novkovic, J. J. Chung, C. Cadena, R. Siegwart,
and J. Nieto, “Volumetric Instance-Aware Semantic Mapping and 3D
Object Discovery,” vol. 4, no. 3, pp. 3037–3044.

[16] N. Hughes, Y. Chang, and L. Carlone, “Hydra: A real-time spatial
perception system for 3D scene graph construction and optimization,”
2022.

[17] N. Hughes, Y. Chang, S. Hu, R. Talak, R. Abdulhai, J. Strader, and
L. Carlone, “Foundations of spatial perception for robotics: Hierarchical
representations and real-time systems,” 2023.

[18] J. Strader, N. Hughes, W. Chen, A. Speranzon, and L. Carlone, “Indoor
and outdoor 3d scene graph generation via language-enabled spatial
ontologies,” IEEE Robotics and Automation Letters, 2024.

[19] H. Deeken, T. Wiemann, and J. Hertzberg, “Grounding semantic maps
in spatial databases,” Robotics and Autonomous Systems, vol. 105,
pp. 146–165, 2018. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0921889017306565

[20] ——, “A spatio-semantic approach to reasoning about agricultural
processes,” Applied Intelligence, vol. 49, no. 11, pp. 3821–3833, 2019.

[21] I. Vizzo, X. Chen, N. Chebrolu, J. Behley, and C. Stachniss, “Poisson
Surface Reconstruction for LiDAR Odometry and Mapping,” in Interna-
tional Conference on Robotics and Automation (ICRA). IEEE, 2021,
pp. 5624–5630.

[22] J. Lin, C. Yuan, Y. Cai, H. Li, Y. Ren, Y. Zou, X. Hong, and F. Zhang,
“Immesh: An immediate lidar localization and meshing framework,” IEEE
Transactions on Robotics, vol. 39, no. 6, pp. 4312–4331, 2023.

[23] J. Ruan, B. Li, Y. Wang, and Y. Sun, “SLAMesh: Real-time LiDAR
Simultaneous Localization and Meshing,” in International Conference
on Robotics and Automation (ICRA). IEEE, 2023, pp. 3546–3552.

[24] A. Mock, S. Pütz, T. Wiemann, and J. Hertzberg, “MICP-L: Mesh ICP
for Robot Localization using Hardware-Accelerated Ray Casting,” 2023.

[25] S. Pütz, T. Wiemann, M. Kleine Piening, and J. Hertzberg, “Continuous
Shortest Path Vector Field Navigation on 3D Triangular Meshes for
Mobile Robots,” in International Conference on Robotics and Automation
(ICRA). IEEE, 2021, pp. 2256–2263.

[26] T. Wiemann, I. Mitschke, A. Mock, and J. Hertzberg, “Surface recon-
struction from arbitrarily large point clouds,” in International Conference
on Robotic Computing (IRC). IEEE, 2018, pp. 278–281.

[27] A. Mock, T. Wiemann, and J. Hertzberg, “Rmagine: 3D Range Sensor
Simulation in Polygonal Maps via Ray Tracing for Embedded Hardware
on Mobile Robots,” in International Conference on Robotics and
Automation (ICRA). IEEE, 2023, pp. 9076–9082.

[28] I. Wald, S. Woop, C. Benthin, G. S. Johnson, and M. Ernst, “Embree: A
Kernel Framework for Efficient CPU Ray Tracing,” ACM Transactions
on Graphics (TOG), vol. 33, no. 4, jul 2014.

[29] S. G. Parker, J. Bigler, A. Dietrich, H. Friedrich, J. Hoberock, D. Luebke,
D. McAllister, M. McGuire, K. Morley, A. Robison, and M. Stich,
“OptiX: A General Purpose Ray Tracing Engine,” ACM Transactions on
Graphics (TOG), vol. 29, no. 4, jul 2010.

[30] N. Morrical, J. Tremblay, Y. Lin, S. Tyree, S. Birchfield, V. Pascucci, and
I. Wald, “Nvisii: A scriptable tool for photorealistic image generation,”
2021.

[31] O. Lima, M. Günther, A. Sung, S. Stock, M. Vinci, A. Smith, J. Krause,
and J. Hertzberg, “A physics-based simulated robotics testbed for planning
and acting research,” in ICAPS Workshop on Planning and Robotics
(PlanRob 2023), 2023.

[32] S. Umeyama, “Least-squares estimation of transformation parameters
between two point patterns,” IEEE Transactions on Pattern Analysis &
Machine Intelligence, vol. 13, no. 04, pp. 376–380, 1991.

[33] L. Niecksch, H. Deeken, and T. Wiemann, “Detecting spatio-temporal
Relations by Combining a Semantic Map with a Stream Processing
Engine,” in 2023 IEEE International Conference on Robotics and
Automation (ICRA), 2023, pp. 8224–8230.

[34] T. Hodan, M. Sundermeyer, Y. Labbe, V. N. Nguyen, G. Wang,
E. Brachmann, B. Drost, V. Lepetit, C. Rother, and J. Matas, “Bop
challenge 2023 on detection, segmentation and pose estimation of seen
and unseen rigid objects,” 2024.

https://ieeexplore.ieee.org/document/9008302/
https://github.com/ultralytics/ultralytics
https://arxiv.org/abs/1809.10790
https://www.sciencedirect.com/science/article/pii/S0921889017306565
https://www.sciencedirect.com/science/article/pii/S0921889017306565

	Introduction
	Related Work
	Scene Graph Generation
	System Setup
	Object Detection and Tracking
	Sensor data pre-segmentation
	Integration with qualitative spatial reasoning

	Preliminary Experiments
	Conclusion and Future Work
	References

