
A Toolkit for Automatic Generation of Polygonal Maps –
Las Vegas Reconstruction
Thomas Wiemann, Kai Lingemann
Universität Osnabrück

Andreas Nüchter,
Jacobs University Bremen

Joachim Hertzberg
Universität Osnabrück and DFKI Robotics Innovation Center, Osnabrück Branch

Abstract

In this paper we present a new open source software package for automatic generation of polygonal 3D maps from point
cloud data for robotic purposes called “Las Vegas Reconstruction Toolkit” [11]. The implemented algorithms focus on
minimizing both the computation costs and optimization of the number of polygons in the generated maps. Furthermore,
we present two application examples: 6D self localization and scene interpretation.

1 Introduction

Recently, the focus in robotic mapping has begun to shift
from planar 2D maps towards 3D environment mapping.
3D maps outperform 2D maps for many purposes, such
as obstacle avoidance, object recognition and scene under-
standing. The introduction of new 3D sensors, especially
Microsoft Kinect, gave an additional boost to this devel-
opment. Nowadays, 3D point clouds are available in sev-
eral variants and qualities: From noisy sparse clouds de-
livered by 3D cameras and tilted or rotated 2D lasers scan-
ners to dense clouds gathered from terrestrial laser scan-
ners, which achieve very high resolutions with a count of
several (hundred) million points per cloud.

Point clouds do not yield a continuous surface represen-
tation, just a possibly very dense sampling. Mathemat-
ical descriptions like B-Splines or polygonal meshes are
far more suitable representations for 3D scenes for several
reasons. With increasing scanner resolution, the amount of
collected point cloud data becomes unhandy. These rep-
resentations can compress the amount of data needed to
represent a surface significantly. On the other side of the
spectrum there are sensors that deliver comparably sparse
point clouds. Suitably fitted continuous surfaces can fill up
the space between the points and can thus result in a more
complete representation. The Las Vegas Surface Recon-
struction Toolkit delivers a set of tools for mesh based sur-
face reconstruction for robotic applications. The software
focuses on data compression and geometry preservation.
An overview of the implemented methods is given in the
remainder of this paper.

2 Related Work

Mesh based approaches create triangle meshes to approx-
imate the scanned surfaces. The de-facto standard is
Marching Cubes, introduced by Lorensen et al. [8]. This
algorithm sub-divides the scanned volume into cubic cells.
For each cell the intersections between the cell edges and
the surface are calculated. Pre-calculated surface patterns
are then used to generate a local triangle mesh approxima-
tion. To interpolate the intersections, implicit continuous
surface representations like planes or splines are fitted to
the local data using least squares fits [1, 7]. A compre-
hensive survey of related research is given in [9]. Another
approach,“Growing Cells Meshing”, uses a neural network
with interactive learning to generate the triangle mesh [2].

Marching Cubes based reconstructions are included in sev-
eral publicly available software packages like Meshlab or
the Point Cloud Library (PCL) [12]. The Meshlab March-
ing Cubes reconstruction uses APSS [5] and RIMLS [10]
projections to determine the isosurface of the point sets.
These methods can yield good results for the right param-
eter set, but the computation time needed is very high.
Meshlab also includes implementations of surface simpli-
fication algorithms [4]. To optimize the model, the edges
causing minimal error to the topology are removed itera-
tively. Since after each edge removal new vertices have to
be inserted into the mesh, the initial topology may be al-
tered. Besides the reconstruction, PCL features a greedy
triangulation for surface extraction, which delivers a trian-
gulation of a given scene, but not necessarily a continuous
surface representation.



Figure 1: Initial mesh generation. The left picture shows a point cloud taken with a tilted SICK scanner. On the right the
generated triangle mesh.

With the Las Vegas Reconstruction Toolkit we present a
new software package for polygonal map creation. The
integrated functions are implemented with a robotic back-
ground in mind, thus they are optimized for execution
speed and data compression. The main focus for the re-
construction is to create surface representations that can
be used in robotic contexts like localization (via ray trac-
ing) or scene interpretation (using spatial reasoning), rather
than other constraints that are discussed in the computer
graphics community like triangle quality, well formed
topology in meshes, i.e. no t-edges, and so on. Our soft-
ware primarily exploits the inherent planar scene structure
that is found in many robotic applications.

3 The Las Vegas Surface Recon-
struction Toolkit

The Las Vegas Reconstruction Toolkit provides an open
source C++-library of several algorithms for polygonal
map generation. Currently Linux and Mac OS are sup-
ported, a Windows port is in development. The library
structure is strictly modular, so that new features can be
integrated easily. It comes with a detailed API documenta-
tion and example programs for surface reconstruction and
a viewer. The reconstruction components can roughly be
divided into three main components: Surface reconstruc-
tion, mesh optimization and texture generation. Functional
details together with example data sets are presented in the
following sections.

3.1 Surface Reconstruction
The map generation process consists of two steps: Ini-
tial mesh generation and mesh optimization. The initial
surface reconstruction in Las Vegas is based on March-
ing Cubes with Hoppe’s distance function [7]. The idea
of Hoppe’s approach is to assign a tangent plane T (pi)
to each data point using a local least squares fit to the k

nearest points (k-neighborhood). These fit planes are rep-
resented by the center of gravity oi of the k-neighborhood
and the surface normal ni:

T (pi) = oi · ni.

The signed distance of any spatial point p is defined as

dT (p) = s(p) · d(p, T ),

where d(p, T ) is the distance of this point to the nearest
tangent plane

d = (p− oi) · ni

and s(p) is the sign of the signed distance function accord-
ing to the relative position of p. This sign is determined by
using the orientation of the normal of the tangent plane. If
p · ni > 0, then s(p) = +1, otherwise s(p) = −1. The
whole process is illustrated in Fig. 2.

n

o

Q1

Q2-

+

d(Q1)

d(Q2)

n

Figure 2: The construction of the signed distance function
as described by Hoppe. For each data point, a so called
“tangent plane” is calculated by a least square fit to its k
nearest points (left). Each plane is defined by its centroid
o and surface normal n (middle). The signed distance of a
query point is the distance of its projection onto the nearest
tangent plane d(qi) and itself. The sign depends on which
side of the surface the query point is (right).

Currently two Marching Cubes variants are implemented:
Standard Marching Cubes and Marching Tetraeder. Usu-
ally the Marching Cube implementation delivers good re-
sults, but the generated meshes can show holes even in



dense data. The Marching Tetraeder version delivers bet-
ter results in such cases, but produces more triangles. Fig 1
displays two exemplary reconstructions that were created
from a scan recorded with a tilting SICK LMS 200 laser
scanner. The left image shows the captured point cloud, the
image on the right displays the initial surface reconstruc-
tion using standard Marching Cubes. Note that the gen-
erated surface contains far more triangles than necessary.
This number is reduced in the mesh optimization step.

For the evaluation of the distance function within the
Marching Cubes algorithm, point normals have to be esti-
mated. We implemented normal estimation methods using
RANSAC or least squares to fit local planes to the the data
points using a set of k nearest neighbors (k-neighborhood).
The normal of this plane defines the point normal. To
achieve consistence, all normals are flipped towards the
scene center. The normal estimation methods can be ex-
changed. Besides our implementation we also integrated
the normal estimation from PCL.

Working with point clouds from rotating 2D laser scanners
results in line or arc-shaped artifacts of data points at larger
distances. These artifacts will cause, in turn, incorrect re-
sults in the fitting process since the orientation of the calcu-
lated plane is solely dependent on local noise. To cope with
this problem, we integrated a dynamic adaptation of the k-
neighborhood to optimize the normal quality. Since higher
k values result in extended runtimes, we aim to find a k
with a value as small as possible that still allows an accu-
rate approximation. Therefore, we adapt k dynamically to
the data density. To detect ill formed k-neighborhoods, we
analyze the shape of their bounding boxes. Critical con-
figurations will result in elongate bounding boxes. If we
detect such a configuration, k is increased until this shape
criterion is fulfilled (cf. Fig 3). Since the laser data suffers
from a lot of sensor noise, the resulting normals are still
fluctuating to some degree, although their basic alignment
is consistent. To reduce this effect, we average all normals
with their neighbors. Fig. 4 displays the improvements
of our method over non-adaptive estimation with fixed k-
neighborhood.

Figure 3: Adaption of the number of nearest neighbors in
regions with low point density. If k is too small, all data
points will be on a straight line. In this case the fit of a
plane will fully depend on the local noise of the data. To
ensure a good fit, we analyze the shape of the bounding
box.

Figure 4: Normal estimation. Top row: Normal estimation
results with k-adaption (right) and without k (left). Second
row: Influence on the mesh quality. Consistent normals re-
sult in connected surfaces (right) while inaccurate estima-
tions produce holes in the triangle mesh (left).

3.2 Mesh optimization

After an initial mesh is created, a set of optimization rou-
tines can be applied. The most effective one in terms of
compression is the connection of planar patches in the cre-
ated mesh. Human made environments contain many pla-
nar surfaces [3]. In these scenarios, the region-growing
approach can help to reduce the number of triangles dras-
tically. The generated meshes are stored in a half edge
data structure that allows us to find adjacent normals of
any triangle in the mesh in constant time. Region-growing
is done by checking if the surrounding triangles of an arbi-
trarily chosen start triangle have a similar surface normal.
As long as the normal of a neighbor triangle does not differ
more than a user defined threshold from the start triangle,
a new search is started recursively from this triangle. This
process is carried on, until a bend in the surface is detected
(cf. algorithm in Fig. 6). The edge between such tow trian-
gles marks a boundary of a planar region. All these contour
edges are saved and fused using a line following procedure
to create an optimal polygonal representation of such a re-
gion.
Practically, the normal threshold for planar fusion has to
be chosen quite big (up to 15◦), so noise in the point cloud
data can result in unevenness in the generated surface.
Therefore we optimize the extracted planes by shifting all
triangle vertices into the common plane. After this process,
the contours of the extracted planar regions are tessellated
to reduce the number of triangles. The effects of this op-
timization procedure on the mesh presented in Fig. 1 are
shown in Fig. 5. For applications where no triangulation is
needed, the tesselation step can be skipped.



Figure 5: Planar mesh optimization. The left picture shows the modified mesh, after all vertices of connected regions
were moved into their common plane. On the right the extracted regions and the newly triangulated mesh.

Figure 6: The mesh simplification algorithm. Faces within
the mesh that have similar surface normals are detected.
The border edges of these planar areas are fused to poly-
gons.

function SIMPLIFY

for all faces do
current face← visited
FUSE(current normal, current face, currentList)
borderLists← currentList
CREATEPOLYGON(border list)
currentList← empty

end for
end function

function FUSE(start normal, current face, list of borders)
current face← visited
for all neighbors of current face do

angle← start normal · neighbor normal
if angle < ε and neighbor not visited then

FUSE(start normal, neighbour, listOfBorders)
else

list of borders← border edge to neighbor
end if

end for
end function

Besides the planar optimization we have included func-
tions to filter artifacts from outliers in the laser scanner
data. We call this function “Remove Dangling Artifacts”
(RDA). The RDA algorithm is also based on region grow-
ing that disperses over all faces connected by a shared
edge. The number of all connected faces represents the
size of the artifact and can be used to determine whether
the artifact is large enough to be of importance and can re-
main in the mesh. Regions that are too small are deleted
from the mesh, cf. Fig. 8.

Another optimization feature is hole filling. The hole fill-
ing algorithm performs a contour tracking on the mesh and
collects all holes up to a certain size which is given by the
number of edges in the contour. In a second step the edges
of each hole are collapsed using an edge collapse operation
until there are only three edges left per hole. The remain-
ing triangle holes are closed by adding new faces to the
mesh which close those holes. Fig. 7 displays an applica-
tion example.

4 Performance and Accuracy

Since an error metric for polygonal maps is difficult to
define, we present some key figures for our maps. The
running times and compression rates for two example data
sets are shown in Table 1. The performance bottleneck in
the reconstruction process is the normal estimation, whose
performance in turn depends on the speed of the used k-
neighbor search algorithm. We integrated several kd tree
implementations (flann, STANN, nabo and ANN). In our
experiments, flann had the best execution performance.
The results in Table 1 were achieved using this library for
k-search.
Table 2 shows the running times for different edge removal
techniques. In most cases mesh simplification is done by
iteratively collapsing the edges in a mesh, whose removal
causes the lowest error to the stored geometry. To identify
such edges, different error metrics exist. The most used are
the quadric error metrics presented by Garland and Heck-
bert [4]. To compare our approach with such methods,
we iteratively removed edges from the initial mesh, until
a compression ratio similar to our method was achieved.



Figure 7: Exemplary result of the “Hole Filling” function. Before (left) and after (right) application.

Figure 8: Exemplary result of the “Remove Dangling Artifacts” function. Non-connected regions up to a given size (left,
marked red) are deleted from the reconstruction.

Table 1: Running time and compression rates for two dif-
ferent data sets. One was the single scan shown in Fig 1.
The other was a registered data set consisting of 10 single
scans.

#Points Initial Faces #Polygons Time

1 271,288 66,374 23,670 1.21 s
10 1,834,599 44,740 3,029 2.25 s

Table 2: Run time comparison between our optimization
algorithm and other mesh reduction methods (removal of
the shortest edges and using quadric error metrics [4]).

Map Gen. Shortest Quadric Compression

1 0.25 s 1.02 s 2.37 s 65 %
10 0.47 s 1.72 s 2.35 s 39 %

To evaluate the accuracy of the generated map, we have
compared the reconstructed geometry shown in Fig. 9 with
manual measurements in the original environment of ceil-
ing height, wall width and height of a room and door width.
Furthermore we inspected the parallelity of the floor, ceil-
ing and walls in the reconstruction. The tests were done
using the vertex distance measurement tool in Meshlab.
The results are given in Table 3. The reconstructed val-
ues show a deviation of about 3 to 4 cm from the original
values due to interpolation errors and noise in the origi-
nal scans. Compared to the size of the mapped area these
inaccuracies are negligible.

Table 3: Comparison of the original and reconstructed ge-
ometries.

Ceiling Width Depth Door Width

Original 2.99 m 5.89 m 7.09 m 0.94 m
Reconstr. 2.96 m 5.85 m 7.06 m 0.90 m

5 Practical Usability of the Gener-
ated Maps

We have tested the usability of the polygonal maps created
with the Las Vegas toolkit for localization in different con-
texts. One example is the LiSA (Life Science Assistant)
robot. The used robot is equipped with several laser scan-
ners mounted in different orientations. All these sensors
use the same polygonal map. The localization is done us-
ing MCL localization. The sensor models are generated via
raytracing in the polygonal map. Fig. 9 demonstrates the
used method and the improvement of the self-localization.
More details can be found in [13].
Another successful application was real time 6D pose
tracking using a PMD time-of-flight camera. For this ex-
periment, a pinhole camera model and ray tracing was used
to generate an expectation of the incoming sensor data.
The expected data was matched with the real sensor data
using ICP to determine the transformation between the ex-
pected pose and the real pose to correct the initial estima-
tion. More details and preliminary results in [14].
Besides localization we used the extracted planes for scene



Figure 9: Application example: Ray tracing for localization in polygonal maps. For this purpose, only the extracted
polygons were used, not the retesselated map. The used robot us equipped with several laser scanners mounted at fixed
angles and pointing at different directions. A Ray tracing technique is used to calculate a sensor model (left). The right
figure shows the improvement of the self localization. The yellow area marks the estimated pose error without the use of
the tilted scanners. The green area shows the result using the additional information from these scanners. The localization
improves considerably [13].

interpretation [6]. Using an ontology of spatial relation-
ships between planes together with an analysis of their
size and orientation, we were able to detect furniture in
the scanned scenes and replaced them with CAD-models
(cf. Fig. 10).

Figure 10: CAD objects that were replaced in the point
clouds using spatial analysis of the planes that were ex-
tracted by the Las Vegas Toolkit [6]

6 Conclusion
This paper has presented a novel software library to extract
polygonal maps from 3D point clouds. Such point clouds
are common output of 3D mapping systems. As several
approaches from the field of computer graphics cannot be
used in robotics, due to sensor noise and time constraints,
we developed and implemented robust methods to create
practically usable 3D polygon maps. The mapping algo-
rithm exploits the inherent scene structure of indoor envi-
ronments that typically contain a large number of planar
surfaces.

References
[1] M. Alexa, J. Behr, and D. Cohen-Or et al. Computing and

rendering point set surfaces, 2002.

[2] H. Annuth and C.-A. Bohn. Smart growing cells. In Con-
ference on Neural Computation, 2010.

[3] R. B. Fisher. Applying knowledge to reverse engeniering
problems. In Geometric Modeling and Processing, 2002.

[4] M. Garland and P. S. Heckbert. Surface simplification us-
ing quadric error metrics. Computer Graphics, 31(Annual
Conference Series), 1997.

[5] G. Guennebaud and M. Gross. Algebraic point set surfaces.
In ACM SIGGRAPH 2007 papers, 2007.

[6] M. Günther, T. Wiemann, S. Albrecht, and J. Hertzberg.
Model-based object recognition from 3d laser data. In Ger-
man Conference on Artificial Intelligence KI 2011, 2011.

[7] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and
W. Stuetzle. Surface reconstruction from unorganized
points. Computer Graphics, 26(2), 1992.

[8] W. E. Lorensen and H. E. Cline. Marching cubes: A high
resolution 3D surface construction algorithm. In ACM SIG-
GRAPH, 1987.

[9] T. S. Newman and H. Yi. A survey of the marching cubes
algorithm. Computers & Graphics, 30(5), 2006.

[10] A. C. Öztireli, G. Guennebaud, and M. Gross. Feature pre-
serving point set surfaces based on non-linear kernel regres-
sion. Computer Graphics Forum, 28(2), 2009.

[11] Las Vegas Surface Reconstruction. http://www.
las-vegas.uni-osnabrueck.de.

[12] R. B. Rusu and S. Cousins. 3D is here: Point Cloud Library
(PCL). In Conference on Robotics and Automation, 2011.

[13] S. Stiene and J. Hertzberg. Virtual range scan for avoiding
3d obstacles using 2d tools. In Conference on Advanced
Robotics, 2009.

[14] J. Wülfing, J. Hertzberg, K. Lingemann, A. Nüchter,
S. Stiene, and T. Wiemann. Towards real time robot 6d
localization in a polygonal indoor map based on 3d tof cam-
era data. In Symposium on Intelligent Autonomous Vehicles,
September 2010.


