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Abstract

Simultaneous Localization and Mapping (SLAM) is one of the fundamental

problems in autonomous robotics. Over the years, many approaches to solve

this problem for 6D poses and 3D maps based on LiDAR sensors or depth cam-

eras have been proposed. One of the main drawbacks of the solutions found

in the literature is the required computational power and corresponding energy

consumption. In this paper, we present an approach for LiDAR-based SLAM

that maintains a global truncated signed distance function (TSDF) to represent

the map. It is implemented on a System-On-Chip (SoC) with an integrated

FPGA accelerator. The proposed system is able to track the position of state-

of-the-art LiDARs in real time, while maintaining a global TSDF map that can

be used to create a polygonal map of the environment. We show that our imple-

mentation delivers competitive results compared to state-of-the-art algorithms

while drastically reducing the power consumption compared to classical CPU

or GPU-based methods.
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1. Introduction

Over the years the solution of the Simultaneous Localization and Mapping

(SLAM) problem has drawn significant attention in the robotics community.

Solving SLAM requires tracking the position of a system while simultaneously

building a map that supports self-localization. Since the problem formulation it-

self is independent from the used sensors and map representation, many different

lines of research in this context have been established, ranging from monocular

SLAM using RGB cameras [1] to the use of 3D data from LiDARs or other

3D sensors [2]. Often, the SLAM problem is divided into the sub-problems of

incremental online SLAM, that aims to integrate the incoming sensor data into

the current map in real time, and graph-based SLAM that tries to refine pose

estimations in an offline post-processing step. Incremental SLAM is prone to

drift due to possible miss-alignments of incoming data. Hence, the consistent

integration of all incoming data in real time is required to minimize this drift.

In this paper, we present an approach called HATSDF (Hardware Accel-

erated TSDF SLAM) for incremental SLAM using 3D LiDAR sensors. This

article is an extension of the algorithmic work presented at ECMR2021 [3] and

the system design proposed at FPT2021 [4]. It summarizes the implemented

algorithms and describes the hardware design and the development process in

detail. To evaluate the scalability on the given hardware in terms is scan-

ning resolution, we performed additional experiments with two different LiDAR

sensors, namely a Velodyne VLP-16 and an Ouster OS1-128. We show that

HATSDF SLAM is able to integrate the incoming data of LiDAR sensors in

real time to maintain a 3D environment map1. The internal map is represented

as a Truncated Signed Distance Function (TSDF). The main benefit of using

such a representation is that it can be used to efficiently compute a polygo-

nal mesh, which can be used for different purposes like visual inspection, path

planning [5] or as environment representation in simulators [6]. The proposed

1The source code is available here: https://github.com/uos/hatsdf_slam
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Figure 1: The HATSDF hardware consisting of a head-mounted Velodyne VLP-16 LiDAR

and mobile embedded computing system (reconfigurable SoC). The TSDF-based registration

to generate the map of an urban environment was done online and in real time using the

SoC’s CPUs and FPGA. The overall power consumption was significantly lower compared to

a regular computer.

algorithm is designed to run on reconfigurable Systems-on-Chips (SoCs) which

combine a classic CPU with a Field Programmable Gate Array (FPGA) that

allows implementing algorithms in hardware. Such SoCs are extremely energy

efficient and are hence apt candidates for deployment on mobile robots.

The proposed system is realized as a stand-alone SLAM box with an optional

ROS interface that can input scans from different LiDARs directly on the SoC-

System. In addition to this live data, pre-recorded data streams from ROS bag

files can be fed into the system for parameter tuning and benchmarking. To

demonstrate its accuracy and flexibility, we evaluate the system on new data

sets recorded online in indoor and outdoor scenes as well as publicly available

reference data sets. The results show that HATSDF SLAM features minimal

drift in these scenarios and compares well to established SLAM algorithms,

while reducing the required energy per laser frame by a factor of 18 compared

to a software implementation on a mobile computer.
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2. Related Work

Depending on the application requirements, a wide variety of SLAM algo-

rithms has been developed, significantly differing in computational complexity.

Incremental SLAM with 3D point clouds is usually solved with some version

of the well-known ICP algorithm [7], that computes the transformation matrix

between sets of corresponding points in two point clouds. An often-used exten-

sion is the Generalized ICP algorithm [8], which introduces an error function

that minimizes the co-variances between sets of corresponding points. Find-

ing the correct correspondences is the key to success in ICP-based algorithms.

The original ICP algorithm uses a simple closest point heuristic. More sophisti-

cated methods include Point-to-Plane [9] or Point-Mesh-Correspondences [10].

These methods are able to enhance the quality of the computed transformation

matrices, but rely on additional information that has to be derived from the

input data. The Point-to-Plane ICP algorithm relies on surface normal esti-

mations, the Point-to-Mesh ICP variant requires some kind of triangle mesh,

respectively, increasing the needed computational time. These methods usually

assume a stop-and-go scan pattern. Scanning with moving vehicles adds addi-

tional problems, as the movement may add additional errors. Hence, methods

like LOAM (LiDAR Odometry and Mapping) [11] have been developed for that

special purpose. The well-known LeGO-LOAM approach [12] extracts planar

features from the point clouds to solve the matching problem.

The main drawback of all of these approaches is that the resulting maps are

aligned point clouds or sets of local meshes which are not well suited as robotic

maps due to the large memory footprint and missing connectivity of the map

elements. For many robotic applications, it would be beneficial to have a closed

surface description of the scanned environments. These limitations can be over-

come by so-called TSDFs (Truncated Signed Distance Functions). A TSDF is

usually represented as a 3D voxel grid, where each vertex of the grid stores the

closest signed distance to the nearest surface. The sign encodes the relative ori-

entation while the truncation prevents inconsistencies in convex environments.
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The main advantage of such a representation is that distance values between

voxels can be interpolated easily, resulting in a pseudo-continuous representation

that allows easy extraction of polygonal models using the well-known Marching

Cubes algorithm [13]. In the context of SLAM, KinectFusion [14] was the first

method to provide such a representation for small volumes by exploiting the

structural advantages of RGB-D images in a so-called Projective ICP imple-

mented on a GPU. The initial version was only able to cover a small volume.

Kintinuous [15] extended that to larger environments using a clever swapping

strategy. Nießner et al. presented an alternative map representation using a

spatial hashing strategy to achieve both a memory and speed efficient map rep-

resentation which suitable for large and fine scale volumetric reconstruction [16].

These algorithms are tailored for RGB-D or time-of-flight cameras, which usu-

ally have a limited range and are sensitive to ambient light. In addition, the

requirement of a GPU increases the power consumption significantly.

To reduce power consumption in mobile autonomous systems, FPGAs are

apt candidates. Hence, several approaches have been proposed to use them in

robotic applications. However, hardware acceleration for LiDAR-focused meth-

ods is rarely seen in the scientific literature. In TSDF-based SLAM, on the

other side, some individual parts of the required processing pipeline have been

implemented in hardware. Gautier et al. [17] used OpenCL to implement ICP

and Volume Integration on an FPGA. The other parts of the KinectFusion al-

gorithm have not been implemented on the FPGA due to memory bandwidth

restrictions. Kosuge et al. [18] improved the performance of picking robots

by implementing an FPGA-based ICP accelerator. They achieved more than

11 times faster pose estimation compared to an implementation on a 4-core

CPU. Additionally, they leverage partial reconfiguration of the FPGA to save

resources by switching the FPGA configuration between graph generation and

nearest neighbor search. In addition to these ICP accelerators, Gautier et al.

[19] performed a design-space exploration of FPGA-based dense SLAM archi-

tectures and implemented an end-to-end dense SLAM accelerator on a Cyclone

V FPGA SoC, achieving a throughput of 2 FPS, which is much too low for prac-
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tical applications. However, compared to the ARM processor of the SoC, they

achieve twice the throughput for the whole design and up to 38 times increased

speed for individual algorithms of the system.

By utilizing only a few landmarks or features, sparse SLAM algorithms sig-

nificantly reduce the computational demands at the cost of localization accuracy.

A popular algorithm for sparse SLAM is the extended Kalman Filter (EKF),

which has been used, e.g., for an FPGA implementation achieving an update

frequency of 44.39 Hz with 20 feature points in a 3D example [20]. In contrast

to sparse SLAM, semi-dense SLAM algorithms aim to use a larger, high-quality

subset of sensory information. Boikos and Buaganis [21] implemented an ac-

celerator for Large-Scale Direct Monocular SLAM, an algorithm that directly

operates on pixel values of camera images. For 320x240 camera images, their

FPGA implementation achieves 4 FPS, which is twice as fast as the CPU-based

reference implementation. Since DDR memory access is the main bottleneck of

the design, Boikos and Buaganis improved the implementation using a dataflow

architecture, which achieved a throughput of 22 FPS on a Zynq-7020 SoC [22]

and 60 FPS at a resolution of 640x480 pixels using a Zynq-7045 SoC [23].

In this paper, we focus on Point-to-TSDF registration with Velodyne VLP-

16 and Ouster OS1-128 LiDARs. Both provide a 360◦ horizontal field of view

combined with a large maximum measurement distance. The used sensors pro-

vide up to 128 scan lines, which is significantly more than the sensors used in the

previous work discussed above. In our work, we target a completely embedded

system solution that is capable of processing the point clouds in real-time with

the maximum scanner frequency and full resolution. For that, we present an

incremental FPGA-based TSDF SLAM approach implemented on an integrated

System on Chip (SoC) to create large-scale TSDF maps from high resolution

LiDARs. It is neither dependent on odometry nor GPS and shows only low

drift due to two factors: First, it is able to process point clouds of the LiDARs

in real time. Second, we use a Point-to-TSDF registration method [24] that

is known to be precise, but computationally expensive on CPUs, which makes

an efficient deployment on mobile systems difficult, due to hardware costs and
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Figure 2: Example of a TSDF voxel grid derived from a single laser scan (left) and an illustra-

tion of the Point-to-TSDF approach used in this paper (right). Green voxels represent positive

TSDF values, red voxels negative ones. The turquoise arrows visualize the transformation,

which is aspired by the registration to match the given set of points shown as white points.

energy consumption

Our completely integrated SoC solution with FPGA acceleration overcomes

these drawbacks. We provide a reference implementation and benchmark our

system with different sensor resolutions. This so-called SLAM box consists of

a small computer case with batteries, SoC and head-mounted laser scanner.

Fig. 1 shows the system and an example map. To prove its energy efficiency,

we compared the resulting power consumption with a software implementation

running on a mobile computer. We assessed its precision in online experiments

using the integrated standalone sensor system (”SLAM box”) while walking and

offline comparison with publicly available data sets.

3. TSDF SLAM

There are many approaches to solve the Simultaneous Localization and Map-

ping problem. In our work, we use an incremental TSDF-based algorithm that

integrates the LiDAR data into a global TSDF map representation based on

pose estimations from an IMU. Our approach transfers the GPU-based swap-

ping strategy of Kintinuous [15] to an FPGA accelerated version. Individual

map parts, so called local maps, are calculated from a set of several scan frames.
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Figure 3: Flow diagram of the iterative Point-to-TSDF registration procedure

If the spatial region of a local map exceeds a predefined maximum, it is fused

into a global map representation after successful registration. This approach

allows the system to map large environments without the need for a more com-

plex resource-intensive implementation of sparse data structures to represent

the scanned environment as suggested in [16]. The global map is stored persis-

tently on the disc in a Hierarchical Data Format (HDF5). HDF5 is a commonly

used data storage format that allows to save and load multi-dimensional ar-

rays efficiently. It allows to organize the data in a custom schema. The main

benefit of using HDF5 is that all data is stored in a single file. Our previous

evaluation [25] proved that robotic maps stored in this format can be accessed

faster compared to direct reading from single files. Within the HDF5 file the

local TSDF maps are stored as single data sets. The indices of the local chunks

within the global map are encoded in the meta data fields of these data sets.

Using HDF5 in our system provides a fast access to the required data around the

current position and supports the implemented swapping strategy, such that the

local map can be updated very efficiently with respect to the changing position
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of the SLAM-Box.

A Truncated Signed Distance Field (TSDF) is a 3D voxel array providing an

implicit surface representation. Each voxel is labeled with the distance to the

nearest surface. Positive values indicate free space, zeroes represent the surface,

and negative values represent occupied areas behind the surface. For generating

a TSDF volume representing the LiDAR data, the TSDF values are generated

based on a method similar to the one described in [24]. For each scan point,

the corresponding ray is traversed, and at every intersection with a voxel, the

truncated distance to the scan point is taken as a new entry. Furthermore, the

new calculated TSDF values are integrated into the current map by a running

average mechanism. For this purpose, a weight for every map entry is stored,

which represents its certainty. In addition, weights are calculated depending on

the distances to the scan points. Depending on the voxel size, a grid cell can

intersect multiple rays. Only the map entry, representing the smallest distance

to the scanned surface, is used for the map update. This is why the calculated

values must be stored temporarily before they can be fused with the current

map. Furthermore, the scan points are ordered in horizontal scan lines, each

recorded with a different opening angle. This leads to gaps in the TSDF volume,

which disrupt the localization. Therefore, the TSDF values are interpolated

orthogonal to the scan rays to fill the gaps as long as no other non-interpolated

entries are determined. To register the incoming frames with the local map, we

use a Point-to-TSDF approach [24] to determine the transformation between

successive poses, where a newly acquired scan is registered using the most recent

local map. This task can be described as a minimization problem as shown in

Eq. 1.

ξ∗ = arg minξ

|P |∑
i=1

‖D(T (ξ) · pi)‖22 (1)

ξ =
[
ω1 ω2 ω3 v1 v2 v3

]T
(2)

P denotes the current set of scan points, while D contains the signed dis-

tance values for every point to the reference map. As shown in Eq. 2, ξ is
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a six-dimensional vector representing the motion between two frames as a ro-

tational velocity ω and a linear velocity v for every axis and T (ξ) returns a

transformation matrix based on this representation. Since the registration er-

ror can be considered as the distance of the scan points to the actual scanned

surface, the deviation can also be calculated as the sum of the TSDF values of

the points itself. The solving strategy for this optimization problem is to move

all scan points in an iterative manner in the direction of the decreasing distance

values until the surface is reached, while the IMU data is used as an initial

rotation estimation. The idea is illustrated in the right part of Fig. 2 on a 2D

example. In each iteration, an intermediate transformation is determined based

on every scan point, which is used to move the points further in the direction

of the surface until they are close enough to the surface cells or a maximum

number of iterations is reached. Eq. 3 describes how an intermediate transform

is built, and Eq. 4 and 5 describe how the matrices H and g can be determined

based on all received scan points.

ξ∗ = −H−1 · g (3)

H =

|P |∑
i=1

J(pi) · J(pi)
T (4)

g =

|P |∑
i=1

J(pi) ·D(pi) (5)

A crucial part for solving this problem is the Jacobian matrix, which is cal-

culated based on the TSDF neighborhood around every point as shown in Eq. 6.

According to the minimization problem, the matrix represents the gradient of

the distance field with respect to ξ and can be determined by applying the

chain-rule, where the TSDF gradient on the right side points in the direction of

the surface and can be calculated for the discretized TSDF map using a central
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differential quotient.

J(x) = ∇ξD(x) =
δx

δξ

δD(x)

δx
=



0 −z y

z 0 −x

−y x 0

1 0 0

0 1 0

0 0 1


·


δD(p)
δx

δD(p)
δy

δD(p)
δz

 (6)

In addition, the changing rate involves a damping factor, which is linearly

increasing with each iteration while the impact of every scan point can be

weighted. The total transformation between two consecutive scan frames is

the combination of the intermediate ones. The complete iterative procedure is

summarized in Fig. 3. Both the mapping and the localization procedure show

a high potential for parallelization as provided be the reconfigurable hardware

architecture of the used SoC. The next sections describe the specific FPGA

implementation and its corresponding system architecture.

4. FPGA Implementation

In this section, the implementation of the SLAM algorithm on the recon-

figurable SoC is detailed. First, an overview of the accelerated algorithm is

provided and the hardware-software partitioning is discussed. This is followed

by a more detailed explanation of the developed FPGA kernels that are used in

the localization and mapping procedures.

4.1. Pipelining of the Algorithm

HATSDF SLAM mainly consists of three processing steps: pre-processing,

registration, and TSDF map update. The pre-processing step applies different

filters to the raw input point cloud. First, a ringwise median filter is applied

to remove outliers. In order to improve the overall runtime of our system, a

reduction filter is applied to significantly reduce the number of points in the

point cloud while simultaneously keeping enough information to obtain good
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Figure 4: Schematic data flow in HATSDF SLAM. Preprocessing, registration and TSDF map

update are pipelined to maximize data throughput.

results in the registration step. The last task of the pre-processing step involves

the accumulation of IMU data published between the last and current scan to

get an initial rotation estimation. The other two processing steps, registration

and TSDF map update, have been discussed above.

Since each processing step is dependent on the results of the previous calcu-

lations, the capabilities for parallel computations for a single scan are limited.

Despite this limitation, we were able to greatly improve the data throughput

of our system by using a pipelining approach, as shown in Fig. 4. For this,

each processing step is executed in its own thread. This allows new scans to

be processed as soon as it becomes available instead of having to wait for the

previous scan to be processed completely.

The overview of the architecture in Fig. 5 shows the kernels in the FPGA

with their internal structure and their connections to the external DRAM mem-

ory. Additionally, it illustrates the connection to the Processing System with

the embedded Arm CPUs and the interfaces to the periphery as well as the
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Figure 5: High-level architecture of the SLAM implementation

different clock domains that are used to maximize the overall throughput. The

main bottleneck of the implementation is the access to the local map, located

in the DDR4 memory. Although the local map only represents a small fraction

of the global map, it is too large to fit into the internal memory resources of

the FPGA. Depending on the scanned environment, the size of the local map

ranges from 20 to 200 MB.

4.2. Storing the map

The TSDF map is represented as a 3D grid with TSDF values and weights

for every voxel. Since large maps would utilize more than the available main

memory, our algorithm only uses a local map around the current pose for regis-

tration. As described in [26], the global map is represented as a set of so called
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”chunks” of a fixed cubic size that can be accessed on demand to replace the

local map, if the detected pose offset exceeds a given maximum. The chunks

are spatially indexed according to their position in the global voxel grid and

stored as serialized arrays in dedicated datasets in a HDF5-file. The name of

each dataset represents the position of the chunk in the global map. Besides the

local map our application also caches a set of chunks around the local pose in

main memory to speed up loading the relevant data. After mapping, the HDF5

file containing the global map can be downloaded from the SSD of the HATSDF

board. After download, a Marching Cubes implementation can be used to com-

pute a triangle mesh, which is post-processed with Laplacian smoothing [27]

and a hole filling algorithm to remove artifacts.

4.3. Implementation of the map update

Simply pipelining the complete implementation does not lead to the per-

formance required to process the incoming data with the maximum scanner

frequency of 20 Hz in real-time. Therefore, we modified the execution order

to achieve better throughput. The map update takes much longer than the

registration, as the former requires a larger amount of slow memory accesses.

Assuming that the pose changes only slightly between two scans, an immediate

map update has little information gain and thus little effect on the localization.

Hence, it is possible to register a few scans before triggering a new map update

with the current scan data and synchronize the map afterwards. This allows us

to decouple the stages and to increase the total throughput of the scan process-

ing because the registration can be performed with a significantly higher clock

frequency than the map update.

Depending on the average moving speed of the system, map updates are

triggered after a predefined number of scans, ranging from 1 for high speed in an

outdoor environment to 15 for low speed, e.g., using a slowly moving robot inside

a building. Additionally, map updates are triggered after significant changes of

position to ensure correct registration based on newly recognized features in the

changed environment. The positional change is measured between the last map
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update and the current position computed by the registration. The threshold

can be configured and should be low if the environment contains only sparse

features, because some features can disappear in the scan while others may

reappear. Using this approach, the system is able to process the incoming data

with the maximum scanner frequency of 20 Hz in real-time.

4.4. Acceleration of the Registration Kernel and the Map Update

In Fig. 4, the green steps are executed in software on the Arm cores, while the

red steps, namely registration and map update, are implemented as hardware

kernels on the FPGA. In our software prototype, these were the bottlenecks that

limited the scan rate. They are computationally expensive but can be efficiently

parallelized, making them the best choice for hardware acceleration.

Calc Partial  and Transform points
Transform pointsRegistration

Merge Partial 
and 

Calculate
Intermediate
Transform

Small Error  
 or Max Iterations

no

yes

Transform Points

Per Point Operations

End

Calc Partial  and 
Calc Partial  and 

Figure 6: Visualization of the registration dataflow

Fig. 6 illustrates the data flow of the registration kernel. The most computation-

intensive steps are the calculations of the H matrix and the g vector (cf. [24]).

Since these tasks can be efficiently parallelized, they are executed on multiple

processing units. Each unit processes an equally-sized subset of the point cloud.

The processing is pipelined so that, ideally, a new point can be processed every

clock cycle. This is a kind of instruction level parallelization. Regarding the

merging of the H matrices and the g vectors, this leads to the fact that in every

clock cycle one partial result from a scan point in added to the total H ma-

trix and g vector. For this reason no further synchronization steps are required
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within a processing unit. For the current FPGA system, performance is limited

by the available six ports to access the DRAM. Each point requires seven mem-

ory accesses to the local map. Based on a design space exploration evaluating

different memory configurations, the current implementation uses three units

with three memory ports to the local map plus one to the scan points. For

smaller or larger FPGAs, the configuration can be easily adapted to maximize

efficiency. In the proposed design, a new point can be processed every three

clock cycles. Instantiating additional units does not improve performance since

the bandwidth of the ports is fully utilized. In the next steps, the partial sums

from the H and g calculations are merged. Because three parallel processing

units are instantiated, only three partial H and g must be added together. Since

this does not result in a bottleneck no additional reduction patterns need to be

applied. Finally, the intermediate transformation is calculated (cf. Fig. 6).

These steps are sequentially dependent. For minimizing the latency, all loops

are unrolled in the high-level synthesis so that operations that are independent

of each other can be calculated in parallel.

The TSDF update is divided into two main phases: First, the new distance

values and weights are calculated and interpolated based on the sensor data.

Then, the results are integrated into the current map, as illustrated in Fig. 5.

Phase one is subdivided into two main steps, running in parallel in a pipelined

fashion: TSDF projection and interpolation. For each scan point, the ray march-

ing is performed in the TSDF projection step. The algorithm selects the next

cell of the TSDF grid along the line between the current position and the scan

point. For this cell, the corresponding interpolation area and TSDF value are

calculated and inserted into a temporary local map. Finally, the temporary lo-

cal map is merged with the actual local map. Each of the three processing units

(projection, interpolation, and merging) can be instantiated multiple times on

the FPGA. Hence, the kernel is easily scalable for different FPGA sizes and

memory configurations.
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Figure 7: System architecture of the SLAM-Box.

5. System Architecture

The goal of our SLAM-Box is to provide a low power SLAM solution for

embedded systems that run on batteries. Therefore, our platform makes use

of an FPGA for energy efficient calculations and minimal software overhead to

maximize the runtime for a mission. Furthermore, the system is portable in

the sense of a dedicated ”SLAM sensor” to allow easy integration in different

robots and drone systems. Due to the small form factor and low weight of SoC

FPGA boards, small aerial vehicles can also be equipped with our system. A

standalone scenario is also possible, where the user presses a button to start

and stop the mapping. This is used in our evaluation, as our system is placed

in a backpack and the sensors are mounted on a helmet.

Fig. 7 shows the system architecture. The SLAM-Box receives data from

external sensors, simulated or recorded data. The FPGA board processes these

to estimate the current pose and generates the map that is saved to an internal

SSD. Via an optional WiFi link, a connected computer system can use the result

for further tasks. Additionally, the generated map can be converted to a mesh

using LVR2 [26]. The following subsections describe the system architecture in

detail.
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5.1. FPGA Board

We use a Trenz UltraSOM+ FPGA module equipped with a Xilinx Ultra-

Scale+ XCZU15EG SoC, embedded in an UltraITX+ base board the core of our

platform. This reconfigurable SoC combines a quad-core Arm Cortex-A53 with

a quite large FPGA fabric in a single chip, providing a wide range of opportu-

nities for possible hardware-software partitions to accelerate the application. A

SATA-based SSD is integrated for storing the global map and 4 GByte DDR4

memory is available for the local map. Additionally, the hardware platform

provides the basic communication infrastructure, including Ethernet (for Li-

DAR and external communication) und USB (for the IMU). The various tasks

have been partitioned between the embedded CPUs and the FPGA, targeting

maximum throughput. For the FPGA implementation, a high-level synthesis

approach is used, providing a good compromise between development time and

algorithm performance.

5.2. Sensor input and output

Our sensor drivers are the main entry points for data from both the LiDAR

and IMU sensor. The drivers can be run in two distinct modes: providing live

sensor data on the SoC itself or receiving sensor data (live or recorded) from

ROS. To take advantage of the flexibility and tooling of ROS, an important but

optional element of our software stack is a component for two-way, non-blocking

communication between the reconfigurable SoC and an Ubuntu-based Host with

ROS installed. This bridge is a ZeroMQ-based messaging library that integrates

seamlessly into the ROS ecosystem. LiDAR, IMU, estimated Pose and other

debugging data can be sent from the SoC to the host, where it is converted to

ROS-compatible message formats.

With this conversion in place, recording data for later use and evaluation is

made easy using ROS bag files. In addition, the host can send any data from

ROS to the SoC. Central to the bridge is the correct timestamp conversion of the

respective systems into their counterpart. These are used for accurate initial

rotation estimates in the registration process. While ROS uses a timestamp
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in seconds and nanoseconds, our system uses the C++ std::chrono libraries to

synchronize using timestamps based on UNIX time. If the bridge is not used,

the pose history and resulting map is saved locally on an SSD attached to the

SoC, which enables our system to function as an independent unit.

5.3. Hardware-in-the-Loop-based Design Flow

Developing hardware-accelerated algorithms usually results in long develop-

ment time, dominated by validation and optimization steps. For the SLAM

implementation, we used a hardware-in-the-loop (HIL) approach that enabled

fast design space exploration together with the ability for fast verification in

simulated and real-world environments. The SLAM algorithm was first imple-

mented purely in software to verify basic assumptions made about the feasibility

of our approach. This has then been optimized towards a multithreaded refer-

ence design on an Intel NUC (NUC6i7KYK, Core i7-6770HQ) and a ROS-based

simulated environment has been developed to feed the necessary sensor data

into the algorithm. Gazebo was used continuously in all design stages to verify

the functionality of the algorithms during parameter tuning and other improve-

ments made to the original prototype.

The simulated environment eases the functional verification of new or changed

algorithms, especially since there are no physical sensors required. But since the

simulated environment can only provide idealized sensor inputs, depending on

the quality of the used models, real sensor data is required for an in-depth eval-

uation of the algorithm. ROS makes this easy as well since the sensor data

generated by Gazebo and sensor data generated by real sensors share the same

interface. As real sensor data is typically more prone to noise or to different

noise than simulated data, this step was especially important for fine-tuning the

parameters.

Both modes of testing and verifying our algorithm mentioned above were

crucial for profiling: analyzing the algorithm and finding the parts that can be

accelerated by implementing them in hardware. Parts of the algorithm that con-

tribute the most to the overall runtime are extensively analyzed with respect to
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possible parallelization since they are predestined for acceleration on the FPGA.

For the hardware/software codesign, the Xilinx Vitis tools have been used. The

kernels identified for implementation on the FPGA fabric are compiled with the

Xilinx High-Level-Synthesis tools based on C/C++ and eventually linked into

the final design. On the software side, the Arm cores on the reconfigurable SoC

run PetaLinux from which the kernels are called through OpenCL and fed with

their respective required data.

After verifying the HLS-generated kernels with simulated data, the system is

finally tested with real-world data. In our case, this means that the SLAM-Box

is mounted on a mobile robot or strapped to a backpack. For reproducibility,

the ROS bridge can be used for recording the live sensor data as well. This data

is, e.g., used for comparing map quality and registration performance using

different parameters.

6. Evaluation

We evaluated our approach with two LiDAR sensors: A Velodyne VLP16

was used as baseline because sensors with similar specifications were used in

related work, e.g., LOAM and the KITTY data sets. The Ouster OS1-128 was

used to show how our approach scales to laser scans with higher resolutions and

larger field of view. The increased amount of data poses a challenge for our

system, since the larger number of points requires more computing resources.

Hence, we use this sensor to benchmark the limitations of the proposed system.

First, we evaluate the system using the Velodyne VLP-16 to show that real time

processing at maximum scanning frequency is possible and delivers consistent

maps. In the second evaluation, we aim to increase the quality of the meshes

extracted from the internal TSDF representation by using an Ouster OS1-128,

which provides up to 8 times more scan lines than the VLP-16. Besides in-

creasing the mesh quality, we use this sensor to evaluate how the increased data

size influences the runtime of the registration and TSDF update steps in our

algorithm. In a third experiment, we use the ROS interface to compare our
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results with established reference data from ROS bag files. Finally, we evaluate

the power consumption of the HATSDF SLAM box and compare it with an

implementation on a standard computer. To allow reproducibility of the pre-

sented results, the descriptions of all system parameters and the configuration

files for every considered dataset are provided together with the source code in

our Github repository2.

6.1. Online SLAM in Real Time

To test the system in a structured environment, we scanned an entire floor of

an office building (about 500m2) with the Velodyne VLP-16 and a voxel size of

6.4 cm for the internal TSDF representation. The scanned environment features

planar walls, floor and ceilings. The head-mounted LiDAR was moved along the

green path shown in the left image of Fig. 8. During the experiment, we visited

every room before returning to the starting position. The total length of the

recorded path is about 275m. The scanning time was 6:52 minutes and 8 098

scans were inserted into the TSDF map, which was then reconstructed into a

mesh using Marching Cubes. To measure the accuracy of the registration and

to quantify the global drift, we returned to the exact starting pose marked in

the beginning of the experiment. The positional difference between start and

end was 7.5 cm and the rotation varied by less than 2o in Euler angles. This is

within the order of magnitude of one voxel in our map. All reported experiments

were performed without any external pose estimates.

In addition to the structured office environment, we further evaluated our

approach in a less structured outdoor environment. Such environments are

generally more challenging due to the lack of floors and ceilings that help to

align the data correctly. The chosen environment also featured slopes to show

the capability to localize the system in 6 DoF. As our scanner’s vertical field of

view is only 30 degrees wide, it can only see the ground about 7m away from the

sensor, depending on the height of the person wearing the backpack and helmet.

2https://github.com/uos/hatsdf_slam
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Figure 8: Online evaluation of the HATSDF SLAM in a building interior (left) and an urban

outdoor location (right). The images show the reconstructed mesh from the generated TSDF

representation. The trajectory in the building data is rendered in green. The indoor data set

has a bounding box of approximately 50 × 30 meters and consists of 8 089 scans. The total

path length is 275m. The outdoor data set consists of 3 494 scans. The total path length is

80m.

We therefore needed to reduce the scanner’s distance to the ground in order to

record enough points on the ground to register with. This was achieved by

driving a kart instead of walking. During this second experiment, we recorded

a total of 3 494 scans in 2:57 minutes and covered path approximately 80m in

length. The resulting mesh of the map is shown in the right part of Fig. 8. It

demonstrates that our approach is able to master height changes, as the ramps

present in the chosen scene are clearly visible in the resulting map.

6.2. Online SLAM with an Ouster OS1-128 LiDAR

Using the Velodyne VLP-16 has two inherent issues using our algorithms

that were apparent in the previous results: First, the vertical FOV of VLP-16

is on the verge of being too small for a head-mounted LiDAR setup. Depending

on the person carrying the LiDAR and the structure of the environment, the

ground plane may not be captured by the sensor. Second, 16 scan lines are

adequate for precise 3D-registration but fail to produce meshes of high quality

due to the large offset between the scan planes, although the HATSDF SLAM

algorithm interpolates between consecutive scan planes.

To benchmark the quality of the extracted triangle meshes, we carried out

additional experiments with an Ouster OS1-128 LiDAR. This scanner features

a 45◦ vertical field of view and features up to 128 scan lines with a horizontal

resolution of up to 2048 points per scan. We chose this sensor for the following
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(a) Photo of the scanned environment (b) Mesh map using 16 scan lines

(c) Mesh map using 64 scan lines (d) Mesh map using 128 scan lines

Figure 9: Visualization of the triangle meshes extracted from the TSDF map with different

number of scan lines. The maps were created using the Ouster OS1-128 LiDAR.

reasons: In general, ICP-based or ICP-adjacent registration algorithms benefit

from higher point cloud density in terms of registration precision. Additionally,

in our case the algorithm specifically benefits greatly from a higher density in

the TSDF map. Finally, the larger vertical field of view of 45 degrees results in

a more stable height localization, as more structures on the ground or ceiling

are visible due to the larger opening angle. Another benefit for our experiments

is that the number of used scan lines can be configured in the sensor’s driver. In

the presented evaluation, we use this feature to evaluate the scalability of our

approach to LiDAR data with higher resolution. For that, we used the ROS-

independent driver provided by Ouster3 which was integrated into our code

structure with minimal modifications.

To verify the functionality of the customized Ouster LiDAR driver, we re-

peated the same experiments originally performed with Velodyne VLP-16 us-

ing an increasing number of vertical scan lines, namely 16, 32, 64 and 128

3Source code provided on Github https://github.com/ouster-lidar/ouster_example/
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Figure 10: Qualitative comparison between the computed meshes using LVR2 and Riegl

LiDAR (left) and HATSDF SLAM with the 128 scan lines from the Ouster OS1.

scan lines, to evaluate registration performance and mapping quality. Figure 9

clearly shows that mesh quality increases as expected with more scan lines.

The increased point density together with the extended field of view results in

a more accurate reconstruction of the walls, and most notably the floor and

ceiling planes. In addition, the contours of objects in the scene are preserved

more accurately when more scan lines are used. These experiments lead to the

conclusion, that the used mapping implementation has a high potential to ac-

curately reconstruct large indoor and outdoor environments with high quality

in short time.

In addition to the HATSDF approach, we scanned the environment shown

in Figure 9 with a terrestrial laser scanner (Riegl VZ 400i). The recorded point

cloud features approximately 27 million points recorded with a precision of

3,mm. This high quality point cloud was then reconstructed using the March-

ing Cubes implementation with signed distance function provided by LVR2 4

using the same voxel size as the TSDF representation in HATSDF SLAM. Time

for reconstruction was 5:45 minutes on an Intel Core i7-4930K with 6 cores

and 32 GB RAM and NVIDIA GeForce GTX 1050 graphics card, which was

used for normal estimation and signed distance computation. This high qual-

ity mesh serves as base line to assess the quality of the maps generated with

HATSDF SLAM. Figure 10 compares the resulting mesh from LVR2 with the

4Software available here: www.las-vegas.uos.de
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Figure 11: Distribution of the cloud to mesh (C2M) signed distances for the reconstructed

mesh with respect to the point cloud recorded with the Riegl LiDAR.

mesh extracted with HATSDF SLAM using the Ouster at full resolution, i.e.,

128 scan lines with 2 048 points each. Table 1 compares selected geometric fea-

tures (measured room sizes, door heights and widths) measured with Meshlab

in the triangle meshes. Ground truth was taken with a high precision Leica

DISTO Lite 5 distometer (3mm accuracy).

Additionally, we compared the extracted meshes with the ground truth point

cloud from the Riegl LiDAR in CloudCompare 5. This tool computes the signed

distances for all points with respect to a given mesh. A rendering of the com-

parisons is shown in Fig. 11. The reported error statistics are summarized in

Tab. 2. Mean error and standard deviation are derived from a Gaussian distri-

bution that is fitted against the distribution of the cloud to mesh (C2M) errors

computed by CloudCompare. The results show that the LVR2 reconstruction

approximates the point cloud very well. The mean error is close to zero. The

mesh extracted from the HATSDF TSDF volume shows larger deviations. The

statistics support the measurements from the manually taken samples in the

previous experiments. The computed mean error over all points is about 5mm

for the HATSDF mesh.

The results show that the meshes extracted from HATSDF SLAM reflect the

structure of the environment well, although the extracted geometry does not

achieve the precision of the meshes reconstructed from the high resolution laser

5
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Table 1: Comparison of selected geometric features in the meshes computed with LVR2 and

HATSDF SLAM with ground truth.

Feature Ground Truth [mm] LVR2 [mm] HATSDF [mm]

Small Door Width 727 730 726

Small Door Height 2420 2456 2306

Large Door Width 812 803 789

Large Door Height 2430 2430 2306

Room Width 6750 6770 6505

Room height 2520 2498 2401

scans. This is due to several reasons. First, our algorithm applies interpolation

on the laser data and Laplacian smoothing on the meshes to fill up missing data

and remove noise. Especially the Laplacian smoothing removes sharp features in

the meshes resulting in deviations from the ground truth. This is reflected in the

fact that the reported values from HATSDF SLAM are always lower than ground

truth. Second, as described above, the scan matching needs more time with

higher number of scan lines which potentially decreases the quality of the TSDF

map due to registration errors as discussed more detailed in Section 6.4. Third,

the ray marching in the TSDF volume does not provides as accurate signed

distance values as the implicit surface reconstructed from the Riegl data due to

discretization. Considering these system-inherent error sources, the deviations

from ground truth in the computed meshes are small enough to prove that they

are suitable for robotic applications, as the measured map errors are usually

within the range of some centimeters.

6.3. Offline Evaluation on Reference Data

In order to compare HATSDF SLAM with other approaches, we performed

accuracy tests with different LOAM and KITTI odometry data sets. LEGO-

LOAM has a similar measurement setup than the one used in the experiments

described in Section 6.2. It uses a VLP-16 scanner running at 10 Hz with at-
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Table 2: Error statistics for the reconstructed meshes with respect to the point cloud from

the Riegl LiDAR as reported by CloudCompare.

min. dst. max. dst. mean std. dev.

LVR2 0.000 1.170 0.00002 0.024

HATSDF 0.000 1.771 0.00500 0.181

Table 3: Error metrics for the pose estimation of the FPGA-Board measured for the considered

KITTI data sets.

Path ATE [m] RPE [m] RPE [°] Trans. Err. [%] Rot. Err. [°/m]

6 2.905 0.12 0.21 4.07 1.58

7 7.541 0.14 0.37 5.73 2.82

tached additional IMU. In the considered data set, the robot drives around a

building at the Stevens Campus in New Jersey. Since no ground truth is pro-

vided, the pose path determined by LEGO-LOAM and the HATSDF SLAM

were plotted against each other. The result is shown in the left part of Fig. 12,

with the HATSDF SLAM path rotated by 6 degrees to compensate an initial

rotational offset. This is because of the discretization of the map representation

in which the rotation can only be estimated within the granularity of the TSDF

cells. During the replay of the recorded data, HATSDF SLAM showed no sig-

nificant change in z-direction, although a small slope can be recognized. This

is because of the halved scanning frequency compared to our setup. Outdoor

scan matching in z-direction strongly depends on features on the ground of the

environment. Since the scan lines there are further apart, the density of the

TSDF entries is much lower. Also, the system covers a larger distance. Hence,

newly captured ground points are located at positions where no TSDF reference

is available for registration.

For the KITTI data sets, a Velodyne HDL-64E was used. It records signif-

icantly more sensor data and was mounted on a driving car, travelling much
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Figure 12: Offline comparison of HATSDF SLAM with reference data sets and trajectories

from LeGO-LOAM SLAM [12] (left) and the KITTI data sets 6 (middle) and 7 (right). Pose

paths estimated by the HATSDF SLAM are shown in red, reference trajectories are displayed

in blue.

Figure 13: Snapshots of the local TSDF maps recorded during the LOAM path (left) and the

KITTI dataset 6 (right). Various outdoor structures such as trees and buildings were mapped

during the scanning process.
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Table 4: Average translation speed of the robot systems during measured for the considered

internal and external evaluation datasets.

Internal LOAM KITTI 6 KITTI 7

Speed [m/s] 0.95 1.30 10.79 6.09

faster compared to our scenarios. Also, no IMU data is provided in the odom-

etry data sets. In contrast to LEGO-LOAM, ground truth for the pose path is

available. Due to the larger amount of sensor data per scan frame and larger

distances, in this scenario the ICP step in HATSDF SLAM needed more iter-

ations to find a minimum. To compensate for this, we reduced the data rate

by a factor of 10 compared to the original data, giving our algorithm time to

converge. The estimated trajectories for data set 6 and 7 are visualized in the

middle and the right parts of Fig. 12. The error metrics for the calculated

trajectories are summarized in Tab. 3.

Although there are strong differences between the setup of the KITTI data

set and our scenarios, HATSDF SLAM is still able to provide a good approxima-

tion of the reference trajectories. The visible drift occurs mostly at corners due

to missing IMU estimates in the KITTI data. As the resources on the FPGA

board are limited, we also had to increase the voxel sizes by a factor of three

(LEGO-LOAM) and ten (KITTI) to adapt to the extension of local map size

to be able to integrate the measured ranges without requiring additional mem-

ory. The resulting interpolation error due to higher discretization of the TSDF

volume also reduces the registration accuracy. We hope to solve this in future

version by implementing a more efficient representation that considers more

level of details in the voxel hierarchy. As Tab. 4 shows, the KITTY and LOAM

experiments were conducted at higher velocities then in our experiments, which

also causes a timing problem on the FPGA, as the clock rate is limited. Given

these quite strict limitations of the used hardware, our results reflect the driven

path well and strongly indicate that the proposed architecture is applicable in

real-life scenarios.
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6.4. Resource Requirements and Performance

The resource utilization of the FPGA design is summarized in Table 5. Regis-

tration and TSDF kernel contribute most to the total resources. The remainder

is required for the base design, including, e.g., the communication infrastructure.

The results show that the current implementation achieves a high utilization in

terms of the control logic blocks. This is because of multiple instantiations

of the hardware and ensures that the SLAM-Box can highly benefit from the

resources provided by the used FPGA. It can also be noticed that the imple-

mentation has a low total usage of internal block RAM. Hence, the kernels have

a high potential to reduce the limiting memory latency, if the block RAM can

be used to cache data located in DRAM during the scanning process.

Table 5: Resource utilization of the Xilinx UltraScale+ XCZU15EG FPGA for the registration

and TSDF update kernels.

Registration TSDF Update Total

Control Logic Blocks [%] 35.87 46.30 98.95

Look Up Tables (Logic) [%] 23.52 29.63 61.70

Look Up Tables (MEM) [%] 1.71 4.88 15.29

Block-RAM [%] 4.30 2.69 6.99

Digital Signal Processing Units [%] 18.37 18.88 37.25

In order to scan indoor and outdoor environments on the fly, our system

has to process every incoming scan in real-time. For our setup, this requires to

process every incoming scan within less than 50 ms, corresponding to the maxi-

mum scanner frequency of 20 Hz. To evaluate these constraints, we analyzed the

latency estimates provided by our hardware development tool and the runtime

measurements of our SLAM-Box during the scanning process. The hardware

design achieved a clock frequency of 150 MHz for registration and 100 MHz for

the TSDF kernel. This results in a total latency of 16.83 ms for the TSDF kernel

and a total latency of 9.45 ms for the registration kernel. When analyzing the

kernel implementation in more detail, it can be seen that the TSDF projection
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Table 6: Runtime measurements for the algorithm during an indoor scanning process for

different scan line configurations of the OS1-128.

Registration TSDF Update

lines mean [s] min [s] max [s] mean [s] min [s] max [s]

16 0.038 0.008 0.143 0.184 0.131 0.223

32 0.059 0.010 0.301 0.229 0.116 0.285

64 0.072 0.010 0.504 0.321 0.172 0.419

128 0.104 0.011 0.557 0.380 0.261 0.482

and interpolation phase has a latency of 6.8 ms, while a latency of 10 ms for

the map merging part of the TSDF kernel is achieved. Hence, generating a new

TSDF volume based on new sensor data takes less time for computation than

integrating a new map part into the already existing representation due to more

memory access via the DRAM ports. Furthermore, it can be observed that the

TSDF kernel takes about twice as much time as the registration kernel. This is

why decoupling of both procedures is crucial to ensure the real-time capability

of the SLAM-Box.

The runtime of the accelerated algorithm was measured during the exper-

iments in different indoor scenarios for both the Velodyne VLP-16 and the

Ouster OS1-128 lidar sensors, respectively. Our system hardware was initially

optimized for the first sensor. The corresponding histogram for the measured

runtimes using VLP-16 is visualized in Fig. 14. It shows, that only 11 % of the

scans are processed slower than the scanner frequency. The average processing

time for an individual scan was 30ms, much faster than the maximum sensor

frequency. This leads to the conclusion that on average the SLAM-box is able

process the incoming sensor data in real time. This can also be observed during

scanning, where the SLAM-Box was able to localize itself correctly without de-

lay, resulting in accurate maps. Furthermore we tested the limits of our system

by increasing the number of scan lines, received by the sensor. This is done
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using the OS1-128 and the results are depicted in Table 6. As can be seen, the

runtime of the system continuously increases with the number of considered scan

lines. Although it can be noticed that beginning with 32 scan lines, the algo-

rithm is not able to execute the localisation faster than the maximum frequency

of the sensor, the system could track its position during the complete scanning

process. This is because of the slower movement speed during the experiment,

which decreases the change in position that must be determined between two

registration steps and also the number of TSDF updates that are needed to

keep the map consistent. Furthermore it can be noticed that the maximum

runtime for the registration and the TSDF update are significantly higher than

the average runtime of both parts of the algorithm. For the registration, this

occurs during a change in rotation. In this case, more iterations are needed to

determine the correct transformation from the current to the last frame. Re-

garding the TSDF update, the higher maximum runtime can be explained by

considering the projection method of the TSDF calculation. In this step, the

intersection of a ray with every cell between the origin of the sensor and all scan

points must be calculated to update the map correctly. Therefore, the number

of updated cells increases with distance of the scan points to the origin of the

scanner. This results in a lower performance of the TSDF update for scenarios

with larger free areas.

6.5. Power Consumption

To quantify the energy efficiency of HATSDF SLAM, we used an oscilloscope

and a LowPowerLab Current Ranger to measure the current over time to trace

the power consumption of individual processes as visualized in Fig. 15 and shown

in Tab. 7. The measurement only considers the FPGA board and the SSD.

Most power is consumed by the TSDF update step, which occurs approximately

between t1 and t2. It is important to mention that the map update and the

registration process are performed in parallel on the system. This results in a

higher total power consumption. The registration only causes small peaks due to

the efficient hardware acceleration. This can also be noticed between t2 and t3,
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Figure 14: Histogram of scan integration times. The red buckets mark the times, which are

slower than the maximum scanner frequency of 20 Hz.

Table 7: Measured current and power of the SLAM-Box in idle and running mode at a supply

voltage of 12 V.

Idle Running

mean min max mean min max

I [A] 0.95 0.92 1.07 1.15 1.03 1.27

P [W] 11.43 11.04 12.78 13.80 12.36 15.24

where only the registration kernel is executed on the FPGA. The board has an

average power consumption of 13.8W with lower and upper bounds 12.36W and

15.24W . For reference, we compared it with an Intel NUC (NUC6i7KYK, Core

i7-6770HQ), normally used on our robots, cf. Tab. 8. Our system consumes less

energy while being able to process the data in a shorter time. Overall, 18 times

less energy is required to process one frame with HATSDF SLAM compared to

the reference system.

7. Discussion and Outlook

HATSDF SLAM, a TSDF SLAM implementation targeting mobile robots

with limited energy budget has been presented. By efficiently utilizing embed-
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Figure 15: Power consumption of the HATSDF SLAM box over time. The horizontal line at

13.8W marks the mean over the measured period.

Table 8: Runtime and power consumption in software and hardware.

Platform Runtime [s] Power [W] Energy [J/Scan]

NUC 0.279 34.0 9.49

SLAM-Box 0.038 13.8 0.52

ded ARM processors and FPGA-based hardware accelerators on a reconfigurable

SoC, we achieved real-time performance with eighteen times smaller energy re-

quirements per frame compared to a state-of-the-art PC. The integrated ROS

bridge enables not only online inspection of the mapping process but also offline

evaluation of reference data sets. In all scenarios, HATSDF SLAM compares

well to established SLAM algorithms, providing accurate pose estimation with

minimal drift. Due to its modular architecture, the implementation can be

easily adapted to new sensors or algorithmic modifications. Next steps will

include the utilization of hardware reconfiguration at runtime, enabling the sys-

tem to automatically adapt to changing environmental conditions. The goals

of such further development include increasing the resolution of the TSDF vol-

ume while reducing the registration time for high resolution LiDAR data. This

may become possible by combining the approach of Kintinous with the idea

of exploiting free spaces in the environment by implementing a more memory
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efficient data structure to represent the local map. Because of the higher com-

plexity of these data structures compared to the current map representation, it

is expected that this will lead to a higher resource utilization in terms of logic

units on the FPGA. However, since these resources are already highly utilized,

further design decisions must be made to implement more efficient environment

representations in hardware. Moreover, feature-based SLAM methods may be

a promising approach to speed up the registration process.
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Laplacian surface editing, in: Proceedings of the 2004 Eurographics/ACM

SIGGRAPH symposium on Geometry processing, 2004, pp. 175–184.

38


