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Abstract

Semantic maps add to classic robot maps spatially grounded object instances

anchored in a suitable way for knowledge representation and reasoning. They en-

able a robot to solve reasoning problems of geometrical, topological, ontological

and logical nature in addition to localization and path planning. Recent litera-

ture on semantic mapping lacks effective and efficient approaches for grounding

qualitative spatial relations through analysis of the quantitative geometric data

of the mapped entities. Yet, such qualitative relations are essential to perform

spatial and ontological reasoning about objects in the robot’s surroundings.

This article contributes a framework for semantic map representation, called

SEMAP, to overcome this missing aspect. It is able to manage full 3D maps

with geometric object models and the corresponding semantic annotations as

well as their relative spatial relations. For that, spatial database technology

is used to solve the representational and querying problems efficiently. This

article describes the extensions necessary to make a spatial database suitable

for robotic applications. Especially, we add 3D spatial operators and a tree

of transformations to represent relative position information. We evaluate the

implemented capabilities and present real life use cases of SEMAP in different

application domains.
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1. Introduction

A semantic map for a mobile robot has to combine semantic, topological

and geometric information in a compact representation. These different types of

information are required to solve relevant problems like localization, path plan-

ning, 3D trajectory planning, task execution, object search, and more. Hence,5

semantic maps have to evolve from specially tailored task-specific representa-

tions towards multi-purpose environment models that can be re-used in different

applications and updated dynamically. Such generalized models should be able

to fuse information from different data layers via a query interface that allows

to extract task-specific environment data on-demand.10

Current approaches in semantic mapping already exhibit features of more

generalized environment models. There has been significant progress in de-

scribing the semantics of environments using ontological approaches to model

a-priori background knowledge and to capture facts about an environment’s

current state. Similarly, large-scale spatial mapping, scene segmentation, and15

object recognition are well understood and can be used to gather spatio-semantic

data of real-world environments. The study of the anchoring problem [1] has

lead to effective strategies to derive environment knowledge from sensor data

and to track entities and their features over time. To that end, it is crucial to

link semantic knowledge with geometric data and perform data analysis across20

both domains dynamically with the acquisition of updated information. How-

ever, the representational frameworks underlying semantic maps are still unable

to ground spatial relations between entities. If grounding spatial relations is ad-

dressed, it is usually done during semantic map building. Appropriate tools on

a representational level are rarely seen, although the benefit of spatial analysis25

for enriching semantic knowledge – especially for anchoring physical objects in

large-scale semantic maps – is obvious.

This article presents how to derive and manage qualitative spatial relations

between objects from quantitative geometric environment data captured by
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some kind of mapping approach. It shows how to realize efficient spatio-semantic30

querying on semantic maps by integrating a spatial database into a semantic

mapping framework. The close integration of a spatial database provides a

dedicated storage and processing module for the spatial environment data as a

suitable complement to a classical knowledge-based system. By correctly an-

choring spatial records to their respective semantic counterparts, the database’s35

spatial operators provide the ability to derive qualitative information about the

spatial relations between stored entities that is otherwise covert. This adds an

essential feature to semantic map representations, since grounding spatial re-

lations uncovers important information about the robot’s environment. In our

approach, the current semantic world model stored in a dedicated knowledge40

base can be updated accordingly whenever an object is inserted or modified in

the semantic map. It also allows to query for environment data on demand

using spatial and semantic constraints simultaneously, which allows to answer

typical questions about the environment, as presented in Figure 1.

We have cast this approach to combine semantic and spatial data into the45

Semantic Environment Mapping Framework (SEMAP). In this paper, we de-

scribe the basic concepts of SEMAP’s architecture, with special focus on the

integration of the spatial database into the semantic mapping framework. We

discuss the extensions added to an existing geometric database system that are

necessary to achieve the desired functionality. We present and evaluate the50

new features of this semantic mapping framework that arise from the novel

combination of the geometric database with a classical knowledge-based sys-

tem, especially the feature of grounding qualitative spatial relations through

the quantitative analysis of spatial data. We show that the presented approach

generalizes well into different application domains by presenting real world ex-55

amples of applying SEMAP.
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Figure 1: Artificial rendering of an office environment modeled in SEMAP. The

labels denote object instances that are present in the knowledge base at their

locations in 3D space and in relation to other objects, as represented in the

semantic map.

• Q1 Which objects are in this Room? • Q2 How many Chairs exist?

• Q3 Where is Mug2? • Q4 Which Mug is closest to the

robot?

• Q5 Is there a Computer in this

Room?

• Q6 Is the Monitor1 on the Desk?

2. Related Work

Over the last decade, the discipline of semantic mapping has become increas-

ingly popular and successful. A recent survey by Kostavelis and Gasteratos [2]

reviewed more than 120 different approaches. It summarizes the significant60

progress made on a broad range of mapping approaches and applications for

semantic maps, including task planning [3], localization [4, 5], navigation [6, 7]

and human-robot-interaction [8].

This review also revealed a significant heterogeneity in the processes of se-

mantic map building, as well as in the underlying semantic map representations,65

because access to spatio-semantic environment data is beneficial in a multitude

of applications. But the level of detail or selection of appropriate data types and

information sources varies significantly, depending on the application. There-

fore different semantic maps use different underlying spatial representations and

semantic annotations.70
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Bastianelli et al., for example, presented a hybrid semantic map consisting

of annotated 2D occupancy grids, whose labels were given by a human instruc-

tor, and topological graphs [8]. It was used for topological navigation, object

search and object manipulation. Nüchter and Hertzberg demonstrated how 3D

point clouds can be automatically segmented into categories like walls, floor and75

ceiling [9]. Pronobis and Jensfelt presented a vision-based system that allows

to identify objects and rooms by analyzing features on position-tagged images

and the geometric attributes, like area and shape, of occupancy grid maps [10].

This heterogeneity is also reflected in the definition of semantics maps, which

either intentionally make no particular assumption about the mapping pro-80

cess or the underlying representations [9, 11] or rely on the concept of hybrid

maps [12, 13]. Yet, a common agreement is that semantic maps have to be

paired with formal knowledge representations and reasoning, to unfold their full

potential. Recent literature provides several examples of how knowledge base

components can be beneficial in semantic mapping [14, 15], for reasoning about85

the environment. These approaches usually use ontological and graph-based

knowledge representations, based on description logics [16].

One example for such a system is KnowRob [17], which combines a knowledge

representation in the Web Ontology Language (OWL) and Prolog-based reason-

ing with an interface to the robot’s control architecture. The goal of KnowRob90

is to provide a system that is fully integrated with the robot to generate new

knowledge from sensor perception and effectively guide the robot’s behavior

through semantic inference. In the context of semantic mapping it has been

used to answer queries about a semantic object map [18]. It has been used in

various projects. One is RoboHow that explored possibilities to use the World95

Wide Web as resource to find instructions for solving everyday manipulation

tasks [19]. Another example is RoboSherlock, which defines a generic interface

for perception algorithms and a knowledge base to plan which perception mod-

ules to use and to consistently feed perceptions into the knowledge base [20].

OpenEASE aims at creating a knowledge base for manipulation episodes that100

can be queried by multiple robots to share their experiences in order to learn
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manipulation tasks and to improve their performance [21].

It is apparent that semantic maps are intertwined with knowledge repre-

sentations and reasoning capabilities. It is, however, somewhat unclear where

to draw the line between a semantic map and the associated knowledge repre-105

sentation and reasoning systems. Similarly, managing their inter-dependencies

remains an open issue. In [2] Kostavelis and Gasteratos regarded the question

of How semantic maps aid knowledge representation and vice versa?, as one of

the open topics in semantic mapping. They pointed out that ontologies and

other formal knowledge representation schemata can yield additional insights110

into a model of the robots surroundings by encoding and revealing attributes

even when these are not perceivable. However, the authors stressed that proper

semantic mapping fuels the knowledge representation by recognizing and an-

choring entities in the environment to connect spatial and semantic knowledge.

For that, they considered creating a spatially ordered hierarchy important. This115

assessment directly points to the challenge of continuously grounding the spatial

relations of objects within an environment.

The set of qualitative spatial relations holding in the environment’s current

state, such as “Mug2 rests on Desk” or “ConferenceTable is in front of the

Robot”, has to be uncovered by inspecting the environment’s spatial aspects. To120

logically reason about the spatial relations between entities by using qualitative

spatial reasoning (QSR), they need to be explicitly stored as symbolic knowl-

edge. Qualitative constraint calculi, like the interval calculus [22] or the Region

Connection Calculus (RCC) [23], can effectively reason about sets of qualita-

tive spatial relations. Suitable software solutions like the SparQ toolbox [24]125

exist, but are rarely integrated into semantic mapping approaches. According

to Wolter and Wallgrün, this is due to a lack of explicitly available qualitative

spatial relations, since the important step called qualification is often missing

and remains largely unsolved in practice. The lack of effective tools for ground-

ing spatial relations in sensor data captured from the real physical environment130

inhibits a wide-spread use of QSR in robotics.

Uncovering spatial relations can be part of the map building and anchor-
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ing process. Sjöö et al. presented a combination of an axiomatic system and

probabilistic inference to interpret topological spatial relations such is-on or is-

in during the mapping process [25]. For additional examples of reasoning with135

spatial relations in the context of real-world robotics applications, we refer to

the comprehensive review by Landsiedel et al. [26].

Grounding spatial relations during the map building pipeline is generally a

good approach, but is restricted to processing incoming sensor data and limited

to the current excerpt of the environment that is under the robot’s scrutiny.140

Hence, it usually does not scale over the entire environment model, nor does

it allow to make spatial queries for objects, whose spatial relations are not yet

grounded. Especially, when environment dynamics are considered and a large

volume of spatial and semantic data has to be integrated into the semantic map

on a continuous basis, maintaining a set of geometrically grounded spatial re-145

lations in the knowledge base becomes a tedious task. Hence, effective tools to

map from quantitative metric data to qualitative symbolic facts are necessary in

the context of semantic mapping, in order to enable the usage of qualitative spa-

tial calculi or other types of formal reasoning over spatio-semantic environment

data. It is therefore desirable to provide the capability of grounding spatial re-150

lations as a feature of the semantic map, since this complements the handling of

spatial relations during map building. In this article, we propose to use a spatial

database as a tool to map from geometric data to symbolic spatial relations.

Spatial databases extend relational databases to store, query and analyze

geometric data. They enable spatial lookup to search for geometries within a155

certain region or volume and provide spatial analysis to test if two geometries

overlap or intersect. To reduce the evaluation time of spatial relations, spatial

indexing techniques are used. Spatial indexing abstracts complex geometries to

primitive bounding geometries (2D rectangles or 3D boxes), whose relations can

be evaluated efficiently even in large data sets. Most indexing techniques rely160

on height-balanced search trees of bounding geometries, so called R-trees [27].

Spatial operators determine whether a spatial relation holds between two

geometries and map from quantitative geometric data to symbolic spatial pred-
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icates. Evaluating distances in 2D and 3D is straightforward, but the analysis of

topological and directional relations is subject to extensive research, especially165

in 3D. Topological relations in 2D have been extensively studied. The DE-

9IM model [28, 29] is the standard for spatial databases proposed by the Open

Geospatial Consortium (OGC) [30]. An overview of approaches to address 3D

topological analysis is given in [31] based on the geometric decomposition scheme

presented in [32, 33], to realize the evaluation of 3D intersection, touch and con-170

tainment. The research on qualitative spatial reasoning (QSR) has proposed

various calculi to define and work with directional relations, varying frames of

reference and cardinal directions. A comprehensive overview of one and two

dimensional solutions is given in [34]. For 3D, Borrmann and Rank describe

two approximate approaches using projection-based and half-space models to175

analyze directional relations [35].

Spatial databases are commonly used as back-ends for geographic informa-

tion systems (GIS) in geography, climatology and governmental administration,

to store and analyze geographic and cartographic data. GISs primarily offer

processing for 2D data, but 3D is actively studied ([36, 37]) and modern solu-180

tions provide at least storage for 3D data. However, a full tool set of spatial

operators in 3D is still missing.

Since spatial databases already integrate means for spatial analysis on top

of storing geometric representations, they are apt candidates for determining

qualitative spatial relations in the context of semantic mapping. Therefore,185

the main contribution of this article is to solve the open problem of grounding

qualitative spatial relations in semantic maps by integrating a spatial database

into a semantic mapping framework.

We analyzed existing spatial databases and identified the extensions that are

needed to make spatial relations qualitative for 3D objects. Besides extending190

a spatial database with new operators, we present the corresponding schemas

and table layouts that are required to support articulated objects and dynamic

update of spatial relations when objects are inserted or deleted. Our implemen-

tation focuses on making spatial relations qualitative to update the current state
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of the environment. It serves as a means to generate symbolic knowledge about195

known facts and spatial relations about the most likely world model. Although

probabilistic mapping approaches can be used to determine the current world

state modeled in SEMAP, they are not yet considered explicitly in the current

implementation.

If the robot’s perception provides information on changes in the environment,200

SEMAP’s model can account for these dynamics by adding, deleting or updating

its entities. The framework currently does not account for a history of the

environment’s past states, nor does it provide a set of alternative environment

models or a probability distribution over models, to account for uncertainties

during the map building process. From a probabilistic perspective, SEMAP205

represents a maximum likelihood model that is maintained over time.

We illustrate the steps necessary for this integration, based on our proof-

of-concept implementation and an exemplary office domain. More domains are

presented and discussed in the application examples and in the final discussion.

3. The SEMAP Framework210

SEMAP was designed as a representation and reasoning system for environ-

ment modeling in robotics. It is based on an object-based environment model

in which every entity in the environment belongs to a known concept class, con-

tributes to a set of asserted facts and consists of a spatial model, which can be

either a single volumetric body or an articulated kinematic chain of those. To215

account for the different nature of symbolic and geometric data, SEMAP stores

the different kinds of information in dedicated storages. A close connection be-

tween the spatial and semantic aspects of an environment is maintained by the

framework’s spatio-semantic data maintenance layer and querying interface as

shown in Fig 2.220

3.1. Architectural Concept

All geometric aspects are stored in a PostGIS database and describe the

shapes and poses of the individual objects in the environment. For articulated
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Figure 2: The SEMAP framework consists of a PostGIS database which provides

spatial data storage and querying capabilities and an Apache JENA triplet store

to maintain the ontological background knowledge and actual facts. Both data

domains are coupled via a query interface that can be accessed by robot control

systems like ROS.

objects, their kinematic chains and current joint configurations are represented

as well. Additionally, the database maintains relational links that connect ge-225

ometric data sets to their complementary semantic descriptions in a separate

knowledge base with factual and conceptual environment information.

The knowledge base uses description logics (DL) [16], featuring the classi-

cal separation into a T-box for storing concept definitions including the tax-

onomy and an A-box for asserted facts. We use a DL-based approach be-230

cause the underlying ontological models can be constructed to separate domain-

independent and domain-dependent knowledge. This helps make the core com-

ponents application-independent and extensible to different application domains.

For that, the T-box maintains a set of domain-independent ontologies that

provide a semantic model of the supported geometric types, how they can be235
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combined to form objects and how objects constitute an environment, whereas

a domain-dependent ontology provides the necessary vocabulary to describe

knowledge about a certain application. Within the A-Box the combined onto-

logical descriptions are used to store facts on individual instance in the envi-

ronment. Such a system can easily be paired with reasoning modules to enable240

rule-based inference on the stored environment knowledge.

To communicate with robot control frameworks, we use an intermediate layer

between the robot’s control architecture and the semantic map representation.

This layer provides interfaces to insert information about environment entities

from different data sources and handles updating the model. It links the spatial245

database to the knowledge base by adding URIs to the geometric entities stored

in the relational data base that point to the respective instances in the knowledge

base. This interface layer handles the incoming queries to retrieve target-specific

data and convert it into the required representation.

3.2. Software Components250

To represent geometries we chose to use PostGIS as it supports 3D geome-

tries best among the various open source spatial data base implementations

available, as shown in Table 1. PostGIS is an open source GIS, based on the

relational database PostgreSQL [38], that is compliant with the standards of

the Open Geospatial Consortium (OGC). PostGIS provides representations for255

a number of geometric primitives. These include points, lines, polygons, and

collections of geometries, as defined in the “Simple Feature Access” specifica-

tion [30]. Even though the standard is specified for 2D geometries only, PostGIS

also supports three dimensional primitives and includes data types for meshed

surface structures based on triangular or polygonal primitives. PostGIS’s an-260

alytic functions can interpret the spatial information as geographic data in a

geodetic reference system or as geometric data in Cartesian space. For spatial

querying, PostGIS combines regular R-trees with Generalized Search Tree in-

dices (GiST) to speed up mixed queries with spatial and relational constraints.

To analyze 2D simple feature geometries, PostGIS uses the GEOS library [39],265
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which provides an extensive tool set of spatial operators. Native PostGIS only

supports few operations on 3D data, but can be extended with custom operators

using the SFCGAL plugin [40]. The SFCGAL project defines an interface to the

Computational Geometry Algorithms Library (CGAL) [41], which provides an

extensive set of geometric algorithms. These algorithms can then be used to de-270

fine additional 3D spatial operators for PostGIS. PostGIS in combination with

the SFCGAL extension realizes the storage of spatial environment data con-

sisting of both 2D and 3D geometric primitives. For spatial analysis, the close

integration of CGAL allows the missing spatial operators to be implemented for

3D geometries.275

In addition to using PostGIS, we have implemented a prototypical integra-

tion of the semantic web framework Apache JENA to support query languages

like SPARQL. We will not dive into the details of this approach – as it is work

in progress – but present a preliminary example of the ontology that will be

used to link the spatial database to the knowledge base.280

To demonstrate the use of SEMAP on a real robot, we implemented an

interface to the Robot Operating System (ROS). This will be made public as

an addition to SEMAP together with the ROS bindings and the reference data

set presented in this article.

3.3. Ontological Model285

The ontological model underlying a environment representation in SEMAP

is comprised of two parts: SEMAP’s core ontology, which is independent of

any domain specific application and a domain-specific ontology, which may be

changed depending on the application.

SEMAP’s core ontology gives the conceptual background for representing290

the spatial elements within an environment model as presented in Figure 3.

These concepts are closely related to the data base layout of the PostGIS back

end, as will be discussed below. The ontology uses standards from the Open

Geospatial Consortium (OGC), because these well-defined models of geo-spatial

data are in alignment with PostGIS’s data types, which were also defined by the295
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Name PostGIS

Description spatial database extension for the PostgreSQL database

Authority Website http://postgis.net

Spatial Types Points, LineStrings, Polygons, MultiPoints, MultiLineStrings, MultiPoly-

gons, GeometryCollections, Triangle Irregular Networks, Polyhedreal Sur-

face

Spatial Index R-tree-over-GiST spatial indexing for high-speed spatial querying

Spatial Functions Over 300 functions and operators, no geodetic support except for point-

2-point non-indexed distance functions, custom PostGIs for 2D and some

3D, some MM support of circular strings and compound curves

Name MySQL

Description Includes a limited set of spatial representations and queries natively.

Authority Website http://www.mysql.com

Spatial Types Geometry, Point, LineString, Polygon, MultiPoint, MultiLineString, Mul-

tiPolygon, GeometryCollection

Spatial Index R-Tree quadratic splitting-indexes only exist for MyISAM

Spatial Functions OGC mostly only MBR (bounding box functions) few true spatial relation

functions, 2D only

Name Spatial Lite

Description SQLite with spatial datatypes, functions, and utilities

Authority Website https://www.gaia-gis.it/fossil/libspatialite/home

Spatial Types Point, LineString, Polygon, MultiPoint, MultiLineString, MultiPolygon

Spatial Index R-Tree variants

Spatial Functions Basic functions for Point, LineString and Polygon

Table 1: Comparison of open source spatial database implementations regarding

their spatial types, spatial indexing technique, and available spatial operators.

Adapted from http://infolab.usc.edu/csci587/Fall2016/
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Figure 3: An excerpt from the ontology that is used to fuse the labels of objects

stored in the spatial data base with semantic concepts in different domains.

OGC. GeoSPARQL’s SpatialObject and the fundamental distinction between

geometries and features are integrated in SEMAP’s upper ontology. Here, the

concept Geometry describes any kind of spatial primitive and provides a seman-

tic wrapper for all OGC data types and serves as a bridge to the well known

Simple Feature Ontology. SEMAP’s KB contains a corresponding instance of a300

Geometry sub-concept, for every geometric primitives stored in SEMAP’s DB.

The property semap:hasDbId is used to create an associative link between the

geometric primitive and its semantic wrapper. SEMAP internally uses these

associations to join spatial and semantic data, in its query interface.

The super-concept Feature is used for all things that can be described305

spatially like SEMAP’s ObjectModel, which aggregates sets of semantically

wrapped geometries to represent an object. For this, it uses the geo:hasGeometry

property and its two specializations: semap:hasBody composes a set of geome-

tries that constitute the object’s actual body. In case of articulated objects,

the Link and Joint concepts are used to describe the object’s kinematics.310

semap:hasAbstraction provides a set of coarser representations, like oriented
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Figure 4: The database schema for representing the environment model. Ex-

planations provided in the text.

and axis-aligned bounding boxes and convex hulls. These abstractions are used

for accelerated spatial processing and enable the analysis of directional relations

like left-of or above-of, based on projection and halfspace geometries [42].

To create a spatio-semantic environment model for a particular application,315

domain-specific ontologies, knowledge bases and rule-sets can be imported into

SEMAP’s knowledge base component. To describe domain-specific concepts

spatially and reason about them as part of SEMAP’s environment model, the re-

spective entities can be associated with an ObjectModel via the hasObjectModel

relation. Figure 3 shows this by connecting objects from a simple ontology de-320

scribing objects and rooms in an office environment to the SEMAP core ontology.

The used ontology is in partial alignment with the indoor furniture classification

ontology used in our previous works on semantic mapping [43].

3.4. Database Schema

Figure 4 displays the database schema for storing semantically annotated325

objects in the spatial database. This schema is roughly divided into three parts:

the representation of object classes (red), individual object instances (blue), and

their different geometric representations at different abstraction levels (green).

To connect the geometric models in the database and the conceptual rep-
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resentation in the ontology, the entity ObjectDescription has an attribute330

ObjectClass that maps the description in the database to one of the concepts

in the ontology (ie. to the concept office:Mug. To represent articulation, each

object class can consist of several Links and Joints that are connected in a

kinematic chain. The individual ObjectInstances have individual Names to

have a readable label besides the internal ID, which is aligned with the semantic335

wrapper’s hasDbID property. To model articulation, each object instance can

represent individual JointInstancess that are linked to connecting Object-

Geometries via JointConnections and LinkConnections that refer to the

object descriptions links and joints.

In our modeling, the ObjectDescription entity represents the generic spa-340

tial model of an object class that can be instantiated via the Instantiation

relation. Since the individual attributes are stored in the blue instantiation re-

lations, the geometries associated with the object descriptions can be re-used to

prevent storing identical geometries multiple times. SEMAP supports 3D poly-

hedral mesh data to describe the body geometries of each individual part of an345

object. The individual configurations of the partial geometries are transformed

according to the instances’ poses and joint states. Since geometric queries in 3D

can be computationally expensive, we can store object geometries at different

abstraction levels. For example, the precise polyhedral mesh representation of

a CAD model can be abstracted by its bounding box or convex hull, which can350

be used for efficient but less precise qualification. These abstractions are initial-

ized when the objects are inserted into the database and updated dynamically.

Examples of the computed abstractions are shown in Figure 5. SEMAP’s de-

fault abstractions are 2D and 3D axis-aligned and oriented bounding boxes, and

convex hulls. Additionally, point-based abstractions are also computed. These355

auxiliary geometries are created with functions from PostGIS and SFCGAL for

the entire object as well as for each individual link. The level of abstraction is

stored in the attribute AbstractionType in the Representation relation.

By convention, all object geometries are defined in a right-handed coordinate

system and the base link of an object is placed at the object’s bottom, as it360

16



Figure 5: SEMAP provides a set of geometric abstractions to enable accelerated

spatial queries. From left to right: 2D axis-aligned bounding box, 2D convex

hull, 2D bounding box, 3D bounding box, 3D convex hull, and 3D axis-aligned

bounding box. The axis-aligned bounding boxes (in gray) are overlaid with the

oriented bounding boxes for comparison.

is often done when using the Unified Robot Description Format (URDF). For

convenience, SEMAP supports the direct import of URDF files.

Semantic information about a geometry is stored in a GeometryLabel

string that labels the sub-part of the object. These refer to a semantic descrip-

tion that is maintained separately in the dedicated knowledge database and365

linked to the spatial database table via this label. This way, the semantic de-

scription of the object is directly integrated into the PostGIS database, so that

we can use relational queries on these labels to emulate data retrieval based

on object semantics. We use this feature to perform spatial queries in PostGIS

to ground certain spatial predicates, which are then asserted to the knowledge370

base as facts.

As described so far, the object descriptions are only the blueprints from

which instances are created to model the actual environment. To build an ac-

tual environment model, the ObjectInstance table combines a reference to

an object description with the position and joint states of an actual instance.375

To manage positional information within the environment model, SEMAP im-

plements a relative positioning system using a transformation tree. Frames in

the transformation tree span local coordinate systems, in which the relative po-
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sitional information is expressed. These frames are defined with respect to each

other and create a directed tree. At the root of the tree, the global root frame380

defines the global coordinate system. The relative frames of all objects can be

transformed into this system by traversing the tree. With this transformation

tree, SEMAP also supports a common practice in many robotic systems (in

analogy to ROS’s tf library), but in persistent storage. That allows to preserve

the environment’s state during robot downtime, which is required in long-term385

applications.

The implementation of the transformation tree is realized in the Frame ta-

ble, which Figure 4 does not show for sake of readability. This relation connects

the Pose of an object part’s instance to the frame to which it is related, via a

reference to the frame of the parent object. Each object instance has a pose,390

which is the anchor for the object’s base link. Additionally, each joint instance

has a frame to allow for a frame-based view on the object’s entire kinematic

chain. Another important function of SEMAP’s transformation tree is to build

a bridge between two different views of an instance’s spatial representation.

Up to this point, we have described the relative view, which is taken in the395

context of a frame-based positioning system. However, once an object instance

is subject to SEMAP’s spatial query system, there is also the demand for an

absolute view on the object’s geometry, because relative geometric information

can not be processed by PostGIS’s R-tree implementation. In PostGIS, all ge-

ometries have to stem from the same global reference frame. In order to obtain400

reasonable results in the spatial analysis, SEMAP maintains a second object

description for each object instance that provides a copy of the relative de-

scription’s geometries and abstractions in absolute coordinates. To create this

view, the transformation from the root frame to the instance’s frame is applied

to all the geometries stored in the relative description. Since this is a poten-405

tially expensive operation, SEMAP creates full absolute representations only on

demand. By default, only the description’s abstractions are transformed. All

absolute representations are cached and reused, until they expire, which hap-

pens every time the object changes in pose or configuration. Since an instance’s
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Operator 2D Geometries 3D Geometries 3D TIN 3D Polyhedron

MinDistance 3/ m 3/ m m 3/ m

MaxDistance 3 3 7 3

WithinRange 3 3 7 3

FullyWithinRange 3 3 7 3

ShortestLine 3 3 7 3

3: native PostGIS m: SFCGAL plugin 7: currently not implemented

Table 2: List of PostGIS’s metric spatial operators and the geometric primitives

supported.

frame can be the reference frame for other objects, any change affects all objects410

that descend from it.

3.5. Spatial Operators

Next, we will review the spatial operators available in PostGIS and discuss

their usage in robotic applications. We will distinguish them by their support

for the following datatypes: basic 2D and 3D geometric primitives (points, lines,415

polygons) and 3D triangle and polygonal mesh data. We also discuss how to

construct custom operators using the SFCGAL plugin for operators that are

missing in native PostGIS, but are required for robotic applications.

Metric Operators

PostGIS offers a number of metrical operators to measure the minimal and420

maximal distance between geometries, to test whether a geometry is (fully)

within a parametrized range of another geometry or not and to return the

shortest or longest line between two geometries. These operators are available

for most 2D and 3D geometries, except for the TIN type, which is implemented as

SFCGAL extension that offers minimal distance measures. A list of all operators425

available in SEMAP is presented in Table 2.

In robotic applications, metric operators are a valuable tool to look up ob-

jects within a certain range around a query location, such as the robot’s posi-
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rosservice call /get_distance_between_objects

"reference_object_types: [’OfficeChair’] reference_object_geometry_type: ’BoundingHull’

target_object_types: [’Mug’] target_object_geometry_type: ’BoundingHull’

sort_descending: false max_distance: false"

Figure 6: Example of using SEMAP’s ROS interface to measure the minimal

distance between all OfficeChairs and all Mugs using the 3D convex hulls.

tion. SEMAP utilizes the different operators to provide distance-based queries

across the various geometric representations of object models. Figure 9 shows430

the implementation of SEMAP’s operator to measure the minimal or maximal

distance between objects. It allows to sort results in ascending or descending

order, which is beneficial in prioritizing objects. Figure 6 illustrates the usage

of the operators using 3D convex hulls.

Topological Operators435

PostGIS implements the DE-9IM calculus [29]. Most common topological

relations, such as equals, intersects, covers and touches, can be evaluated for 2D

geometries. Similarly, equality, intersection and containment tests for the Box2D

type and an intersection test for the Box3D type are available. Additionally,

SFCGAL provides intersection tests for all 3D geometries as shown in Table 3.440

Among these operators, those evaluating containment and intersection rela-

tions are most valuable and versatile for robotic applications. On the one hand,
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Operator 2D Box 2D Geo. 3D Box 3D Geom. 3D TIN 3D Polyh.

Containment 3 3 : 7 7 :

Intersection 3 3 3 m m m

Touch 7 3 7 7 7 7

Equality 3 3 7 7 7 7

3: native PostGIS m: via SFCGAL plugin :: custom extension 7: currently not implemented.

Table 3: List of available topological spatial operators and the geometric prim-

itives supported.

they allow for spatial look-up by identifying if an object’s geometry lies within

(or at least intersects with) another geometry. In this aspect, containment op-

erators work similar to metric operators, but exceed them in flexibility, since445

potentially arbitrary areas or volumes can be queried. On the other hand, they

allow to ground the spatial predicates that hold between objects, which makes

topological operators highly relevant for applications in semantic mapping. By

applying topological operators on SEMAP’s environment model, all objects that

are in a certain area can be queried to create the respective semantic knowledge,450

which in turn can then be processed by qualitative spatial reasoning techniques

separately from the geometry with justification from a geometric evaluation.

Unfortunately, both PostGIS and SFCGAL offer no 3D containment tests.

Hence, we extended SFCGAL with such operators by using existing CGAL

algorithms. The current implementation is limited to detect containment for455

a set of target points or a polyhedral body within a reference polyhedron. It

enables SEMAP to evaluate 3D containment on all 3D bounding volumes, which

are represented by polyhedral mesh data. Examples for SEMAP’s 2D and 3D

containment tests are presented in Figure 7 and 8.

Directional Operators460

PostGIS natively provides a set of directional operators to identify if a ge-

ometry is left-of, right-of, above-of or below-of another geometry. They

operate on the 2D axis-aligned bounding boxes of the query geometries only.
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rosservice call /get_objects_within_area

"reference_polygon: ... target_object_types: [’Chair’,’Table’]

target_object_geometry_type: ’FootprintHull’ fully_within: false"

target_ids: [115,156,116,157,180]

Figure 7: The presented operator evaluates the object’s 2D convex hulls against

a reference polygon. Since the operator’s relaxed interpretation was chosen,

intersecting objects were included in the query result, as well as those fully

within the reference polygon.

Thus, they identify the directional relations with respect to the extrinsic global

reference frame, but not based on the object’s intrinsic reference frames, which465

limits their utility for robotic applications. Figure 8 (a) demonstrates this prob-

lem: the native operators can not infer that the ConferenceTable is in-front-of

most of the ConferenceChairs, but behind-of ConferenceChair116 as to the

chair is facing away from the table. Another issue is that the operators neglect

the third dimension, which makes it impossible to determine that the TeaPot470

in the depicted scene is above-of the ConferenceTable in a three-dimensional

sense. To overcome these shortcomings and allow for spatial analysis using

3D directional relations and intrinsic reference frames, we implemented the

projection-based and halfspace-based model, as proposed by Borrmann [42].

In the projection model, the faces of each object’s bounding box are extruded475

to create six box geometries on top of every face. The extrusion’s distance is
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determined by multiplying the object’s extent in the respective dimension by a

scaling factor. In the half-space model, six additional box geometries are cre-

ated by first extending the bounding box faces along the two secondary axes

before extruding along the primary axis. The extrusion’s direction follows the480

conventions for object descriptions and both models are stored within an object

description’s set of abstraction models and transformed accordingly for each ob-

ject instance. These additional box geometries can be used to evaluate 2D and

3D directional relations from the object’s intrinsic point of view. The contain-

ment operator is used for a strict interpretation of directional relations, labeling485

only those object to be in the tested relation if they are completely within the

projection space. For a relaxed interpretation, the intersection operator is used,

which allows for partially included objects, too. The presented directional mod-

els are quite basic and could, if required, be exchanged with more elaborated

models.490

Figure 8 presents examples of these auxiliary geometries. In (a), the light

red 2D box extending ConferenceChair180 ’s front, as well as the dark red box

extending from ConferenceChair116 ’s back constitute projection geometries.

These geometries now properly reflect the reference object’s intrinsic viewpoint,

e.g., ConferenceChair180 is behind-of ConferenceChair116, whereas Confer-495

enceChair116 is in-front-of ConferenceChair180. (b) presents a 3D example

for detecting directional relations. The blue box above the desk’s top is used to

detect objects that are above it, such as monitor, laptop, and mug.

By combining directional and topological operators, additional spatial rela-

tions can be identified. To evaluate the is-on relation, SEMAP pairs the strict500

3D above-of operator with an additional distance constraint that rejects all tar-

get objects beyond a certain threshold distance, such that it can find all objects

that are on another object. In Figure 8 (b), for example, the chair’s bounding

box violates the strict above-of relation relative to the desk’s top projection,

and the teapot’s bounding box exceeds the distance threshold, because it was505

artificially placed way above the desk’s surface. All other objects are correctly

classified as being on the desk.
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(a) 2D Directional Models (b) 3D Directional Models

Figure 8: An application example of SEMAP’s custom directional operators in

2D and 3D.

3.6. Query System

Querying SEMAP for environment knowledge is done by using the meth-

ods defined in SEMAP interface layer. This interface layer also handles the510

synchronization between SEMAP’s spatial data base and the knowledge base.

The PostGIS back-end is queried using SQL, whereas the Apache JENA

triplet store provides a SPARQL endpoint. Currently, there is no automatic

synchronization between the two querying interfaces, such that the synchro-

nization has to be explicitly triggered in the correct order.515

First, the spatial database is triggered to evaluate binary spatial operators

that identify a relation between two geometries, e.g., determine the distance

between two objects. For this, a set of reference and target geometries must

be assigned. To restrict the set of geometries in terms of their object classes,

SEMAP relies on the semantic labels assigned in the PostGIS data base. This520

allows to impose semantic constraints during the spatial querying process. It is

also possible to refer to specific objects by using their IDs directly. The type

of spatial representation can be constrained, as well. SEMAP allows to use

both complete body geometries, as well as the given abstractions in 2D and
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def get_distance_between_objects( call ):

if call.max_distance:

distance = ST_3DMaxDistance(ref_geo.geometry , tar_geo.geometry)

else:

distance = ST_3DDistance(ref_geo.geometry , tar_geo.geometry)

pairs = db(). query( ref_obj.id, tar_obj.id, distance ).\

filter(

ref_geo.id.in_(get_geo_ids(ref_obj , obj_const , geo_const )),

tar_geo.id.in_(get_geo_ids(tar_obj , obj_const , geo_const )),

ref_obj.id != tar_obj.id )

if call.sort_descending:

result = pairs.order_by( desc( distance ) ).all()

else:

result = pairs.order_by( distance ).all()

Figure 9: A code excerpt of SEMAP’s distance measurement operator.

3D. All geometries must obviously be drawn from the absolute view on the525

object instances. The semantic and geometric constraints are evaluated prior

to filtering. An example is presented in Figure 9.

Once executed, the spatial query returns pairs of object IDs that satisfy the

spatial relation tested for. Depending on the operator, additional information

is returned as well, i.e., the respective distance between the objects. The spatial530

relations are now grounded in terms of a quantitative geometric analysis. Next,

as they represent facts about spatial predicates holding between entities, they

are accordingly asserted in the OWL-based A-box in JENA’s triplet store. After

the insertion it is possible to semantically query for spatial relations. In this

case, the SEMAP ontology provides additional information about the entities535

and relations encountered in the environment’s domain through ontological rea-

soning about the conceptual background knowledge in the T-box. Other types

of inference, for example, using rule-based reasoning, can be used from here.
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Figure 10: The created data set remodels an office environment at Osnabrück

University.

3.7. Performance Evaluation

To evaluate the performance characteristics of spatial queries, we conducted540

a set of experiments. Since SEMAP makes no assumptions about the environ-

ment model’s data source, it allows to build environments from sensor data, as

well as from provided CAD models. For the following evaluation we constructed

a reference data set from CAD data modeling the building of the Computer Sci-

ence department at the University of Osnabrck depicted in Figure 10. The data545

set contains a total of 300 individual object instances that were created from

35 different reference models used as gemetric object descriptions. The objects

are spread across 18 different rooms, which resemble real offices, computer labs

and seminar rooms. Examples of how to generate similar maps from real sensor

data are presented in Section 4.1.550

Based on this data set, we conducted a set of test queries, to exhibit the per-

formance of SEMAP’s spatial querying and to differentiate different strategies

for using spatial operators. All test where conducted on a Lenovo ThinkPad

W530 with Intel Core i7-3940XM (4x 3.0 GHz, 8MB cache) and 8GB RAM.

First, we tested the execution of the containment operator using two dif-555
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Dim. Reference Target Num. Tests Time/Test [s] Total Time [s] Num. Pairs

2D Room BB2D 18 All POS2D 300 5400 0.000007 0.039337873 282

Room CH2D 18 All POS2D 300 5400 0.000012 0.064801216 279

Room BB2D 18 All BB2D 300 5400 0.000011 0.061866045 278

Room CH2D 18 All CH2D 300 5400 0.000014 0.074759007 275

All BB2D 300 All POS2D 300 90000 0.000003 0.269836902 439

All CH2D 300 All POS2D 300 90000 0.000004 0.325406074 430

All BB2D 300 All BB2D 300 90000 0.000002 0.203353166 363

All CH2D 300 All CH2D 300 90000 0.000003 0.265438796 360

3D Room BB3D 18 All BB3D 300 5400 0.033033 177.784672022 268

Room BB3D 18 All POS3D 300 5400 0.016201 90.110987186 274

All BB3D 300 All BB3D 300 90000 0.036631 3274.874104981 278

Table 4: Performance evaluation of the strict 3D containment operator.

ferent query types. The first type creates an inventory list for all rooms by

performing a many-to-many strategy with instances of Room as reference set

and an unrestricted target set. The second query type provides a full enumer-

ation of all object pairs matching the is-in relation, by using a completely

unconstrained many-to-many strategy. Both queries were performed using the560

strict containment operator in 2D and 3D and on different abstraction levels.

The results shown in Table 4 provide two insights. First, increasing the

geometric abstraction level decreases query selectivity and vice versa. Testing,

for example, 2D positions against the 2D bounding boxes returns more results

than testing bounding boxes against each other. This is expected, since the565

latter is more restrictive. Evaluating against convex hulls is even more selective.

The same holds for the comparison between queries executed in 2D and 3D, here

evaluating in three dimensions is obviously more selective.

Secondly, increased accuracy comes at computational cost and vice versa.

Comparing the 2D data sets reveals that testing positions or bounding boxes570

against bounding boxes is considerably faster than testing against convex hulls.

This is due to the fact that the necessary tests can be performed in constant

time, since both geometries are of fixed size, whereas the geometric complexity

of the convex hulls is usually higher and also varies among objects. In the

2D case, these differences are negligible, since each test only takes a couple575

of microseconds, so that even a large number of tests can be performed in
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reasonable time. The full enumeration of containment relations on 2D convex

hulls was executed in 0.26 s for total of 90.000 tests.

For 3D spatial queries, however, the situation is different. Testing a single

pair of 3D bounding boxes takes about 35 ms, which is reasonably fast for a580

small number of queries, but with an increased number of tests, the query time

accumulates to minutes or more. The full enumeration of all containment rela-

tions using 3D bounding boxes, for example, took over 54 min. This tendency

was expected, but PostGIS’s performance on 3D geometries seems to leave room

for optimization. Currently, the poor scaling of the 3D operators renders the585

direct evaluation of 3D spatial relation useless, especially in robotic applications

that need near-realtime response. It is, however, possible, to narrow down the

set of geometric tests, which addresses these performance problems, as described

next.

3.8. Increasing Performance590

The first strategy is to successively apply spatial operators, with an increas-

ing level of selectivity and computational complexity. By applying coarser but

quick to compute spatial tests, we narrow down the object pairs that need to

be tested with computational expensive operators.

Figure 11 illustrates this strategy on a simple scene. Here, we want to test595

which objects shown in (a) are on the table. We could test for the 3D relations

holding between all objects in this scene, directly or apply a 2D query as a filter

query before. In (b), the convex hulls of the objects are shown. Querying for

strict 2D containment reveals that mugs and tea pot are fully contained in the

table’s convex hull, while the chairs are not. Therefore, we can immediately rule600

out that the chairs may be on the table. The given 2D containment, however,

may indicate that the target objects are either in or on the table or that 3D

directional relations, such as above-of and below-of, may hold as well. We

can therefore continue with testing for is-on based on the 3D bounding boxes.

Testing for a 2D relation before applying the more complex 3D spatial oper-605

ators, can effectively reduce the number of tests. To exemplify the advantages
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of this approach, we conducted the previously described experiment again, but

used a 2D containment before testing for 3D containment. This significantly

reduced the number of 3D tests from 90000 to 359, as well as the total runtime

for testing from 54 min to 14 s. The results are shown in Table 5.610

OP Reference Target Num. Tests Time [s] Num. Pairs

2D/3D Room BB2D BB3D 18 All BB2D BB3D 300 5400 277 9.9509649270 268

2D/3D Room BB2D BB3D 18 All BB2D PT3D 300 5400 277 4.837368965 277

2D/3D All BB2D BB3D 300 All BB2D BB3D 300 90000 359 14.018936157 278

2D/3D All BB2D BB3D 300 All BB2D PT3D 300 90000 359 6.91635704 281

Table 5: Performance evaluation of the strict 3D containment operator using a

2D pre-query.

Similar performance increases can be produced for all other spatial operators

when testing for intersections or directional relations. The actual run times vary

from operator to operator and are dependent on the number and the complexity

of the involved geometric tests. Using pre-queries to accelerate the query process

is a strategy that can also be used across all spatial relations and on the different615

geometric representations and abstractions of an object. The choice is usually

dependent on the application and always a trade-off between computational

complexity and spatial accuracy. By default SEMAP’s query interface already

applies suitable 2D pre-queries, before executing 3D spatial queries, to allow

online robotic applications.620

Another strategy to optimize query performance while keeping geometric

accuracy, is decomposing objects into their individual parts before testing. By

default, SEMAP’s spatial query system performs object-to-object tests, using

either the object’s body geometry or a geometric abstraction that covers the

entire object. Figure 11 shows two problems that arise: While geometric analysis625

on the actual object’s body returns the most accurate evaluation, it is very

costly, especially when the models are as detailed as the chairs in (a). An

evaluation on the entire object’s 3D orientated bounding boxes is faster, but may

not provide the required level of detail. In (c), for example, an intersection would
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(a) 3D Scene

(b) 2D Convex Hulls (c) 3D Bounding Boxes

(d) 2D Decomposition (e) 3D Decomposition

Spatial Relation Geometry Target Reference Result

is-in CH2D Teapot572 Table571 True

is-in BB3D Teapot572 Table571 False

is-on BB3D Teapot572 Table571 True

intersects GEO3Dbody Chair570 Table571 False

intersects BB3Dbody Chair570 Table571 True

intersects BB3Dlinks Chair570 Table571 False

(f) Spatial Queries.

Figure 11: (a) shows a simple 3D environment, (b) the 2D convex hulls and (c)

the 3D oriented bounding box of the entire object, whereas (d) and (e) show

the oriented bounding boxes of the individual parts of the objects in 2D and

3D, respectively. (f) shows the evaluation of different spatial relations and their

results.
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be found for Chair570 against Table571, even though there is none between the630

object bodies. Since SEMAP supports composite objects and kinematic chains,

it is further possible to query for spatial relations by considering the individual

links of objects. By decomposing the objects into parts as shown in (e), we can

significantly reduce the computational complexity and still determine the desired

results, as (f) shows. To find cases where this object decomposition scheme635

is valuable, again a 2D query for intersecting object footprints can be used,

before applying more complex operators. In (d), for example, the intersection

of the entire object’s 2D convex hulls can be used as an indicator that the links

may need to be evaluated individually. Increasing the level of detail, e.g., by

checking (d) the link’s individual 2D bounding boxes, may then provide the640

information that a 3D test must be executed only for the table’s surface against

the chair’s seat, legs and arm rests. Testing these links against each other

using 3D bounding boxes, finally reveals that no links intersect and applying

the directional operator shows that these parts of the chair are indeed below

the table surface, as shown in (e).645

We manually segmented the chair’s CAD model and imported it into SEMAP

via an URDF description. One could, however, add automatic object decom-

position functionality to the framework, to use this strategy without additional

manual effort. See [44] for a suitable approach.

4. Practical Applications650

This section demonstrates how to perform combined spatial and semantic

queries with the SEMAP framework in order to support various applications

that benefit from semantic environment data.

4.1. Map Generation from Sensor Data

For practical applications it is crucial that SEMAP is able to handle se-655

mantic information from a real mapping process on a mobile robot. Since the

framework can handle all geometric data types supported by PostGIS, it is pos-

sible to add semantically annotated objects to SEMAP from different mapping
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approaches. Figure 12 shows results from an approach that uses CAD refer-

ence models for semantic classification in RGB-D data [43]. If CAD models660

are not available, surface reconstruction methods in combination with semantic

classification based on planar constraints can be used to create a semantically

annotated polygonal representation from incoming sensor data, as shown in

Figure 13.

This is to illustrate that arbitrary annotated polygonal data – including665

appropriately converted octree representations – from actual robotic data can

be fed into SEMAP instances. For this article, we tested SEMAP with data

from the approaches presented above, but the integration of other reference

data sets like NYU [46], Robo@Home [47] or others is clearly feasible after the

implementation of suitable converters.670

4.2. Topological Structuring

Performing spatial and semantic analysis on the environment model can

make information explicit that is otherwise only implicitly encoded in the data.

The topology of an environment, for example, is covert in the spatial relations

that hold between objects and can be revealed by applying spatial operators.675

The extraction of topological knowledge is a key feature of our semantic mapping

framework and is of great benefit for path planning and exploration, especially

during the initial map building process, when many spatial relations need to be

Figure 12: Detection of furniture instances from RGB-D data using CAD refer-

ence models as presented in [43].
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Figure 13: Semantic labeling of polygonal reconstructions from point cloud

data (left) based on normal orientations and planar relations [45, 9] (center) to

a SEMAP model (right).

grounded at once.

To bootstrap assertions on topology underlying our test data set, we used680

queries like the ones evaluated in Section 3.7, to create an inventory of all rooms

and used it to insert the objects into SEMAP’s knowledge base afterwards. The

obtained spatial predicates were then used to restructure the environment’s

transformation tree to reflect the topological relations between the objects. We

use the containment relation, to bind the objects found in each room to the685

reference frames of the respective room. See Figure 14 for an example.

A subsequent query identified all objects that are on objects of type Table.

The results were also used to bind the target objects to their parent’s frame.

This step is illustrated in Figure 15: (a) shows a the transformation tree of a

single room before and (b) after the objects are bound to their supporting tables.690

(c) shows a close-up of single table. Since the redirection of a reference frame

is negligible, the run time of a batch-wise topological restructuring compares

to the performance of the strict containment operator as shown in Table 5.

Of course the same procedure can be applied for other common objects with

surfaces, as well as parts of objects, e.g., the boards of a shelf.695

Applying topological restructuring of the relative transformations brings sev-

eral benefits: First, objects move together with their topological parent, e.g.,

a mug bound to a table moves if the table is moved. Second, the explicitly

encoded topology can be queried directly from the transformation tree, which

is considerably faster. An example: a spatial containment query to evaluate the700
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Figure 14: Applying containment queries on a global scale allows to structure

environments topologically. Here, the 2D bounding boxes of all Rooms were used

to structure the environment displayed in Figure 10.

objects within Room505 took about 0.94 s, whereas retrieving the same inven-

tory list from the transformation tree after the environment was topologically

restructured took merely 0.0025 s. This significant drop in retrieval time is

owed to the fact that a relational database lookup is considerably faster than

spatial queries, as no geometric analysis is involved. Third, all explicit relations705

can be returned as a topological graph that can serve as input for topological

navigation, without taking the detour over the knowledge base.

4.3. Object and Scene Classification

Topological analysis can also be the source of further insight into the envi-

ronment’s semantics. For instance it is possible to classify groups of objects into710

high-level aggregates or discriminate between type of rooms depending on their

inventory. This requires suitable background knowledge and rules that discrim-

inate object properties, assign additional attributes or create new entities.

Such rules can be implemented, for example, by adding an SRWL rule inter-
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(a) Topologically Structured By in (b) Topologically Structured By in and on

(c) 3D Close-Up

Figure 15: (a) shows the transformation tree of a single room structured by

evaluating the spatial relation is-in. (b) shows the same scene structured by

additionally evaluating the is-on relation. (c) shows a table in close-up to

illustrate how objects on the table are bound to the table’s reference frame.
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?room r d f : t ype o f f i c e : Room

?room semap : hasObjectMode l ? room obj

? room obj semap : hasConvexHul l2D ? room abst r ch2D

? desk r d f : t ype o f f i c e : DeskTable

? desk semap : hasObjectMode l ? d e s k ob j

? desk semap : hasConvexHul l2D ? de sk ab s t r ch2D

? de sk ab s t r ch2D semap : i s I n 2D ? room abs t r l 2D

==>

?room r d f : t ype o f f i c e : O f f i c e

Figure 16: A rule classifying a room as an office, due to a particular type of

table in it.

preter to the Apache JENA back end. Figure 16 shows a simple classification715

rule that uses the concepts defined in our office domain, as well as the grounded

spatial relations, to specify that an instance of type Room is actually of type

Office, due to the fact that it contains a specific type of table, namely a

DeskTable. The scene in Figure 15c would qualify for this rule-based classifica-

tion. This type of reasoning is used as a key component in [43].720

In a similar style, other room types could be distinguished from each other

based on their contents. For the scene shown in Figure 17, one could identify in-

stances of DesktopComputer and Monitor within a narrow search radius around

an instance of Table and group those into a new object entity of type Workplace.

Afterwards aditional queries over the number of workspaces contained in a room725

could be used to differentiate between ComputerLabs and Offices.

4.4. Object Retrieval

To search for objects based on spatial and semantic criteria is an asset in

many robotic activities, ranging from task planning and object manipulation

to human-robot interaction. SEMAP’s query system can be of help in all such730

applications.

Imagine the robot shown in Figure 18 (a) is asked to perform fetch-delivery

tasks, e.g., to bring the operator his coffee mug. To solve this task, the robot is

challenged to find out possible target mugs within the environment and identify
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Figure 17: A SEMAP scene of a computer lab room with multiple workspaces,

each consisting of a table, desktop computer and monitor.

the correct instance. Hence it has to answer various basic queries about the735

environment. A query like Q1 in Figure 18 (b) will provide a set of potential

targets and the rooms they are in. To narrow down this selection to the actual

target, additional information is needed. However, a query about topological

relations, such as Q2, may enable the robot to formulate natural questions, e.g.,

“Do you mean the mug on the desk, right of the laptop?”. A likely response740

could be: “No, mine is on the Shelf.”. This additional information allows

to filter the results of Q1 down to a single instance, namely Mug3 and thus

yields a distinct target for the robot. If the robot’s next task is to serve tea, it

can issue a query like Q3 that directly identifies the most suitable target, the

Teapot, and immediately retrieves its pose and relative geometries to guide the745

navigation, grasp planning, and object manipulation. Note that the latter query

can be enriched with robot-dependent information, such as the maximal viable

bounding volume to fit the robot’s gripper, in order to extract only suitable

matches.
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(a) An office environment modelled with the SEMAP framework.

Query / Result

Q1 Return all mugs and the objects (parts) they are on.

R1 Mug2 on Desk; Mug1 and Mug4 on ConferenceTable, Mug3 on Shelf1-Board3

Q2 Which relations holds for Mug200 with respect to desk and laptop?

R2 Mug2 is-on Desk, right-of Laptop

Q3 Return pose and geometry of a (graspable) teapot.

R3 Teapot, Pose27, RelativeGeometry27

(b) Several query types that let SEMAP support different robotic applications.

Figure 18: An exemplary office environment and questions referring to objects

in it that may come up in fetch-and-delivery tasks for a service robot in such a

place.
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(a) Environment Awareness (b) Robot Navigation Extraction

Figure 19: Two applications that make use of dynamic data extraction from

SEMAP’s environment model: (a) filters the robot’s environment for relevant

objects, whereas (b) extracts a map for navigation.

4.5. Environment Awareness & Dynamic Map Updates750

Obviously the just-mentioned object retrieval queries are only useful if dy-

namic changes in the environment are continuously detected and incorporated

into SEMAP’s representation.

To detect dynamic changes in the environment, we proceeded as follows. We

first created a module that implements environment awareness for our mobile755

robot and informs its object recognition module about entities that can and

should be tracked. It identifies these objects of interest (e.g., tables and chairs)

within a search radius around the robot, as depicted in Figure 19 (a). It uses

a continuously executed range query using SEMAP’s distance operator on a

parameterizable set of objects. This informs the robot about the it need to760

track and check whether they are still present or not.

To this end, we use the currently stored object locations to navigate to

the nearest object. Then we use parts of our map-building pipeline for object

recognition. We hereby rely on a CAD matching approach, similar to the one

presented in [43]. The necessary CAD models are provided by SEMAP directly.765

If the object is recognized at the given location, we use the returned estimate on

the object pose, as an update to SEMAP’s environment model. Once the object

is updated, a spatial relation extraction query is automatically triggered to
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inform the knowledge base about potential changes in the environment topology.

If the object is not found at the given location, we retract the entity from the770

environment model.

We also use the strategies presented above, to topologically re-structure the

environments model after every map update, ie., when an object has moved or

a new object was created. To correctly insert a new object, the run time is

around 0.3 s on average, which indicates that the environment topology can be775

maintained with every change on our mobile robot.

Currently, we can not track the articulation of environment entities, since

our perception pipeline is limited to detecting rigid objects, yet we were able to

test SEMAP’s ability to represent the dynamics of articulated objects by using

our mobile robot itself as a test sample. We imported the robot’s URDF model780

to create an articulated object entity within SEMAP. Next, we continuously fed

the robot’s pose estimate and joint states into the environment model, to align

the robot’s SEMAP model with the current world state. In doing so, we are able

to query for spatial relations between the robot’s links and the environment, i.e.,

we were able to infer that the robot’s gripper is over a desk during the execution785

of an object manipulation task, as shown in Figure 20.

4.6. Navigation Map Extraction

SEMAP represents a model of the robot’s environment, from which multiple

applications can retrieve task-specific environment data on demand, rather then

maintaining several different semantic map representations simultaneously. In790

this sense, SEMAP is a hybrid map, but with the additional freedom of deciding

at run time which set of map representations suits the given applications best.

As an example for the extraction of task-specific maps, we implemented a

module that extracts grid maps for localization and navigation from SEMAP’s

database. It queries the environment’s absolute geometries and dissects these795

into multiple horizontal slices, which are then used to create a 2D projection of

the environment’s 3D geometry. Converted into an occupancy grid map, this

projection is made compliant with the standard algorithms for robot naviga-
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Figure 20: To query for the spatial relations between the robot and environment

entities, the SEMAP model of our mobile robot is continually updated using its

pose estimate and its joint states to describe its articulation state.

tion in ROS. A parameterizable set of rooms and objects is used to tailor the

extraction processes to the robot-dependent demands of the application. By800

default, we create the navigation maps for the entire floor on which a robot

operates, including all geometries along the robot’s height. We also augment

the grid maps to restrict the robot from areas in which it may disturb humans.

For this we use SEMAP’s semantic knowledge to identify all chairs and then

add safety buffers to their geometries using additional PostGIS operators for805

applying a spatial padding. Figure 19 (b) shows the map extraction process.

The horizontal slices through the environment geometry are shown in yellow,

the convex hulls of the blocked objects in red, the resulting occupancy grid is

shown in black. Note how the projected boundary around the chairs is larger

than their spatial footprint, due to the semantically-augmented spatial padding.810

By registering to dynamic changes in SEMAP’s database, we avoid the incon-

sistencies that may result in robotic systems when 2D navigation is decoupled
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Figure 21: Excerpts of an agricultural-specific domain model added to SEMAP.

from 3D data processing. It is further possible to work with multiple instances

of the map extraction module on a single SEMAP model. These can either

provide multiple robots with customized maps or a support a single robot’s815

3D navigation using a stack of 2D grid maps, like in Figure 20. A detailed

description of the map extraction module used there is presented in [48].

4.7. Changing the Application Domain

So far, all examples where confined to service robotic tasks in an office do-

main. To clarify that SEMAP defines a domain-independent framework for820

constructing environment models, we applied it in an entirely different applica-

tion domain. To achieve this, SEMAP’s core ontology has to be paired with a

suitable ontology for the new application, such that domain-specific knowledge

can be represented. The underlying representations and reasoning mechanisms

remain the same.825

In recent work, we applied SEMAP in an agricultural context [49]. For this,

we simply replaced the office ontology used throughout, with a new domain

model. Figure 21 shows this ontology, which describes entities in agricultural

environments, such as fields, farms and tractors.

We generated an environment representation based on this model, by import-830

ing URDF models of agricultural machines, as well as a set of fields, represented

by using polygonal boundaries and silo facilities, using 3D CAD models. Next,

we use recorded telemetry data from a real harvesting campaign, to replay real

machine movements between a field and a silo facility in our SEMAP model.

We then used SEMAP’s spatial and semantic reasoning capabilities, to detect835
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(a) Localization of a tractor in a silo (b) Detecting an overloading situation.

Figure 22: We used telemetry data from an actual agricultural machines to

dynamically synchronize an environment model in SEMAP. Using the spatio-

semantic query interface, we were able to topologically localize machines within

agricultural facilites (fields, farms and silos) and to identify the correct posi-

tioning of two machines for overloading harvested goods.

spatial relations between the agricultural machines and their environment, to

gain insight into the agricultural process underlying the machine activities.

For example, we continuously identified the topological relations that hold

between a movable entity, such as a tractor, and the set of agricultural facilities,

namely the fields, farms and silo facilities. We used the 2D position abstraction840

of each tractor and harvester to test for containment against the facilities 2D

polygonal boundaries. We use the positive results for grounding a generic pred-

icate isAt, as well as specific predicates defined in the agricultural ontology,

such as inField, onFarm and atSilo.

We used SEMAP to reason about more complex spatial relations, too. For845

example, we combined several basic directional relations about a harvester and

a transport vehicle, to construct the domain-specific relation of describing that

both vehicles are correctly positioned for overloading harvested goods. In a

situation like the one shown in Figure 22 (b), we started with a range query

to detect if the transport vehicle is close enough to the harvester. If so, we850

tested whether the trailer is left of the harvester (or right – depending on the

orientation of the overloading boom) and if the harvester’s overloading boom is
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over the trailer. If so, the relation positionedForOverloading is inferred to

hold between both machines.

This is valuable information about the underlying agricultural process, which855

was previously covert in the telemetry data of both machines, but due to

SEMAP’s spatio-semantic processing is now explicitly available within SEMAP’s

KB, where it can be used for further processing, such as rule-based reasoning

and eventually for planning and controlling the agricultural machines.

5. Summary and Discussion860

In this article we presented a semantic map representation framework called

SEMAP that uses spatial database technology, to effectively ground qualitative

spatial relations in order to make them available for knowledge-based reasoning.

We extended PostGIS to support spatial queries in 3D and used its quantitative

geometric analysis, to derived qualitative facts about the spatial relations of en-865

tities within an environment model. To bridge between geometric and semantic

representations, we linked the entities from the geometric storage in the Post-

GIS database to concepts in an ontology modeled in OWL and implemented an

data management and query interface that inserts these spatial predicates into

a dedicated knowledge base, represented through Apache Jena, which allows870

for subsequent qualitative spatial reasoning on a symbolic level. To effectively

realize the evaluation of geometric tests for complex geometries, we integrated

suitable geometric abstractions into SEMAP’s spatial model and added auto-

matic optimizations to its querying strategies, such that time consuming tests

are only executed when needed.875

We presented the database schema to store static and articulated objects

within the spatial database and the core ontology that is used to represent their

semantic counterparts in the knowledge base. The separation between geometric

core concepts and application domain in the ontology allows to use the proposed

framework in different contexts. We demonstrated the basic functionalities of880

SEMAP in an office domain. These application examples showed, how the cur-
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rent implementation is able to utilize the spatial analysis capabilities in classic

tasks of mobile robotics, like map building, scene classification, object retrieval

and navigation. To demonstrate that the framework can be easily adapted to

represent different semantic contexts, we switched to an agricultural domain885

model. In this application example, we used SEMAP to detect overloading po-

sitions in an harvesting process, based on recorded machine telemetry and thus

provided valuable insight into a real-world application. For changing the ap-

plication domain, we simply substituted the underlying domain ontology, while

re-using SEMAP’s core ontology and its PostGIS database for representing and890

querying geometric environment data.

The main drawback of the current implementation is that the linking be-

tween geometric models and qualitative knowledge has to be maintained via the

query interface. Currently, we trigger all relevant updates manually to ensure

that derived information from the database is inserted in the knowledge base.895

This is an issue concerning performance and data redundancy, and is also incon-

venient during application development. To solve this problem, a formal query

language that includes querying over qualitative spatial relations directly could

be used and integrated into SEMAP’s query system. With such a formalism,

it should be possible to detect whether relations are already qualified or not900

to call the respective spatial operators only if needed. A candidate for such a

formalism could be GeoSPARQL, which we indent to investigate in future work.

Another issue is the performance of the spatial database back end. Even

though GIS technology provides spatial operators off-the-shelf, their 3D spatial

representations and geometric processing lacks the efficiency required for real905

time processing. Although we tried to minimize the query times, some queries

produce significant latency which may lead to data loss when the environment

model is updated with high frequency, e.g., when telemetry information from

actual machines is analyzed. A possible solution would to integreate a optimized

spatial back tailored specifically for 3D data.910

To improve qualitative spatial reasoning, it would be beneficial to integrate

a dedicated qualitative spatial reasoning system, like SparQ [24] in addition
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to the geometric analysis based on PostGIS and CGAL. It will be necessary

to evaluate which calculi are suitable and whether the current set of spatial

operators supports the chosen calculi or not.915

Currently, SEMAP can only handle a most likelihood model. It would be de-

sirable to combine the strength of the current implementation with probabilistic

methods to further enrich the stored and derived knowledge. Additionally, han-

dling the histories of objects would be beneficial to track the positions of objects

over time to support anchoring processes. These properties should be relatively920

easy to implement in terms of the used database, but making these information

usable for knowledge based reasoning is an open issue and will definitely require

to redefine the structure of our semantic mapping framework.

In spite of these conceptional and implementational issues, the general ap-

proach to integrate a spatial database into semantic maps was proven to be925

beneficial and the SEMAP framework provides a functional proof-of-concept.

Having operators for quantitative spatial analysis readily available in the se-

mantic map’s representation helps solving the qualification problem of spatial

relations and effectively supports further spatial reasoning in robotics. Placed in

a processing chain where the data is pre-processed, e.g., using stream processing930

and probabilistic approaches, SEMAP in its current state can already solve a

number of relevant problems in semantic mapping as the presented application

examples clearly demonstrate.
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