
Model-Based Object Recognition from

3D Laser Data

Martin Günther, Thomas Wiemann, Sven Albrecht, and Joachim Hertzberg

University of Osnabrück, 49069 Osnabrück, Germany

Abstract. This paper presents a method for recognizing objects in 3D
point clouds. Based on a structural model of these objects, we generate
hypotheses for the location and 6DoF pose of these models and verify
them by matching a CAD model of the object into the point cloud.
Our method only needs a CAD model of each object class; no previous
training is required.
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1 Introduction

Learning maps of a previously unknown environment is a classical task for mobile
robots. The large body of literature about the topic would address it mostly
as Robotic Mapping or as Simultaneous Localization and Mapping (SLAM).
Traditionally, robot maps contain landmarks and/or environment structures and
the according geometry information in 2D or 3D only, as they are mostly used for
planning collision-free paths and for localization. In more recent work, semantic
categories in maps are becoming more and more important: These may be, for
example, classes of objects contained in the map, classes of rooms, or topological
regions. Semantic information in maps promises to be of help for both the robot
control itself and as a basis for human-robot or robot-robot interaction.

A technical challenge for semantic mapping approaches is to extract the
semantic categories from the raw sensor data, and to do so in real time on board
the robot. Most previous object recognition approaches are appearance-based:
Based on a 2D image or 3D point cloud of the scene, features are extracted and
passed into a classifier that has previously been trained using labeled training
examples.

However, in recent years, CAD models of many types of objects have become
widely available. From the CAD model of an object, a declarative, structural
model of the object in terms of its primitive geometric constituents (planar
patches, cylinders, spheres) and their spatial interrelations can be obtained.
This offers the possibility of a complementary, model-based approach to ob-
ject recognition: Instead of classifying objects by their appearance, we extract
the geometric primitives found in the raw sensor data and match them to the
structural models of our objects.



Our approach extends and goes beyond previous work [10], where coarse
structures like walls, doors, ceiling and floor were labeled. Here, we take this
idea one step further and extend it to the recognition of medium-scale objects.
We describe a system that recognizes different types of furniture in 3D laser
scans and present first empirical results.

2 Related Work

Previous work on model-based object recognition in 3D point clouds has been
carried out by Rusu et al. [15, 16]. They present a complete semantic mapping
framework based on 3D laser data; in contrast to our work, the model fitting
part uses cuboids of variable dimensions instead of CAD models.

Most other work in object-recognition is appearance-based (in the sense that
no structural model of the object is used, although some use CAD models). Lai
and Fox [6] use sampled CAD models from Google 3D Warehouse to train an
object detection system used to label objects in urban 3D laser scans. Mian et
al. [9] use a geometric hashing scheme to recognize objects by matching CAD
models into a 3D point cloud.

Several methods [18, 14, 20] for extracting interest points and creating stable
descriptors based on 3D shape have been proposed which can be used to recognize
objects in 3D point clouds. Stiene et al. [19] detect objects in range images using
an Eigen-CSS method on the contours of objects, combined with a supervised
learning algorithm. In a similar setting, Nüchter et al. [11] use Haar-like features
together with AdaBoost for object detection.

An idea similar in spirit to our approach is proposed in [5] where matching
of CAD models is utilized to allow for manipulation tasks such as grasping
in a household environment. Contrary to our approach, the matching itself is
performed within 2D image data, instead of the 3D environment representation.

A robot manipulation system that integrates knowledge processing mech-
anisms with semantic perception routines, including CAD model matching, is
presented in [12].

Part of our method requires the use of spatial relational reasoning, which
is often done using constraint calculi [13]. Our task, however, differs from that,
because we consider the spatial relations between geometric primitives as part
of the definition of an aggregated object. For this reason, we use ontological
reasoning for this task. Another advantage of this approach is that numerical
ranges can be used via SWRL rules.

3 Model-Based Object Recognition

In recent years, CAD models of many kinds of objects have become widely
available. One resource of CAD models is Google’s 3D Warehouse, which allows
querying and retrieving CAD models of virtually any kind of object via the
web. In the domain of furniture recognition, CAD models are often available



directly from the manufacturer or from companies specialized in creating CAD
models for interior designers. We use a database of CAD models supplied by our
university’s furniture manufacturer.

In this paper, we focus on the domain of furniture recognition for several
reasons: First, due to the widespread use of CAD models in interior design, the
availability of CAD models in this domain is especially strong. Second, most
kinds of furniture feature a set of planar surfaces which can be robustly recog-
nized in 3D laser scans. Third, due to the rigidness of furniture, these planar
surfaces are in a clearly defined relation to each other.

Figure 1 shows the embedding of our system in a general semantic mapping
framework. We see our model-based object recognition method as complemen-
tary to appearance-based methods based on 2D image features or 3D shape
features.
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Fig. 1: System overview. While the present paper is focused on model-based object
recognition, we consider this method as yielding complementary information to stan-
dard recognition methods. So in a more general system architecture, they may well
co-exist. We will not deepen this issue here.

Using the information contained in CAD models for object recognition has
several advantages. Instead of having one classifier for each kind of object, only
the geometric primitives have to be detected. Based on these, objects are recon-
structed. Also, no classificator training and no labeled training sets are required;
to add a new object class, only the CAD model is required. In the future, it
would even be conceivable that such a CAD model could be retrieved on-line
from the web. Another advantage is that once an object is recognized, the corre-



sponding part of the sensor data can be replaced by the CAD model, thus filling
up occlusions in the sensor data.

On the other hand, appearance-based methods have an advantage where
the to-be-recognized object is non-rigid, does not consist of clearly identifiable
geometric primitives of a certain minimum size or where labeled training data,
but no CAD model is available.

Our model-based object recognition method consists of three parts, which
will be detailed in the remainder of this section: geometric primitive detection,
which extracts the geometric primitives from the sensor data; object hypothe-
sis generation, which classifies the geometric primitives to find potential object
locations; and object hypothesis verification, where these potential matches are
accepted or rejected.

3.1 Geometric Primitive Detection

The first step of the object recognition procedure is to extract geometric primi-
tives from the 3D point cloud. In our approach we rely on planar patches, since
they are most relevant for detecting furniture. In the remainder of this paper we
will refer to these patches simply as “planes”. However, our approach could be
extended to other kinds of geometric primitives, such as cylinders or spheres.

The idea of our plane extraction algorithm is the following: First, a triangle
mesh of the scanned scene using an optimized marching cubes [7] implementation
is generated. Within this mesh, connected planar regions are extracted using a
region growing approach. A detailed description of our procedure can be found
in [21]. Figure 2 shows two exemplary results of this procedure: The left picture
shows a reconstruction of a closable office shelf with one side open. The right
picture shows a filing cabinet. Both reconstructions are based on 3D laser scans
taken with a tilting SICK LMS 200 laser scanner (about 156.000 data points per
scan). The extracted planes are shown in different colors. Non-planar regions in
the mesh that were not considered by or algorithm are rendered in green. As one
can see, the relevant planes for our purposes can clearly be distinguished. For
each extracted plane, we save the characteristic information that is needed for
the OWL-DL reasoner to generate object hypotheses. The relevant key figures
for our process are size of the plane, centroid and surface normal.

3.2 Object Hypothesis Generation

Semantic knowledge about identified objects is stored using an OWL-DL ontol-
ogy in combination with SWRL rules, which will be used to generate hypotheses
of possible object locations and initial pose estimation, based on the planes ex-
tracted in the previous section.

OWL, the Web Ontology Language, is the standard proposed by the W3C
consortium as the knowledge representation formalism for the Semantic Web. It
consists of three sublanguages (OWL-Full, OWL-DL and OWL-Lite). The sub-
language OWL-DL [3] corresponds to a Description Logic, a subset of First-Order
Logic, allowing to use many expressive features while guaranteeing decidability



Fig. 2: Two examples for plane extraction. Detected planes are colored individually;
non-planar surfaces are colored in green. Left: closable shelf (sliding doors) in front
view. Right: a filing cabinet. The pictures show that our plane extraction algorithm is
able to extract the relevant geometric information for our model based object recogni-
tion procedure.

(in polynomial time). It has been extended by SWRL, the Semantic Web Rule
Language [4], which allows to use Horn-like in combinations with an OWL-DL
knowledge base and includes so-called built-ins for arithmetic comparisons and
calculations. OWL-DL was chosen as the knowledge representation format for
this paper for several reasons: OWL-DL ontologies can be easily re-used and
linked with other sources of domain knowledge from the Semantic Web, they
easily scale to arbitrarily large knowledge bases, and fast reasoning support is
available. In our implementation, we use the open-source OWL-DL reasoner Pel-
let [17], which provides full support for OWL-DL ontologies using SWRL rules.

owl:Thing

Furniture Plane

ChairShelf Table HoriztlPlane VerticalPlane

OfficeDeskConfTable

Fig. 3: The parts of the ontology’s class hierarchy relevant for the examples in this
paper. For our approach, we distinguish between horizontal and vertical planes (right
branch). The relations between different kinds of furniture are modeled in the left
branch.

Figure 3 shows part of the ontology used in this paper. The right part mod-
els the geometric primitives (here: horizontal and vertical planes). Each plane
extracted in the previous section is added as an individual to the ontology, along



with its orientation (horizontal/vertical, based on the normal), its height above
ground (based on the centroid), its bounding box and its area. Additionally, we
add two different spatial relations between planes, based on the centroid and
surface normal which have been extracted in the previous subsection, as OWL
properties. The property isAbove is added between two horizontal planes if the
distance of their centroids, projected onto the ground plane, is below a certain
threshold. Likewise, the property isPerpendicular is added between a horizontal
and a vertical plane if their centroid distance is below the threshold.

The definitions of furniture classes in the ontology (the left part of Fig. 3)
contain a set of conditions that are used to classify the planes into possible furni-
ture instances. For example, most standard desks have a height of approximately
70 cm. So all horizontal planes that have about this height and have a certain
minimal size are valid candidates for table tops. This can be expressed by adding
the following SWRL rule to the ontology:

Table(?p)← HorizontalP lane(?p) ∧ hasSize(?p, ?s)

∧ swrlb : greaterThan(?s, 1.0) ∧ hasPosY (?p, ?h)

∧ swrlb : greaterThan(?h, 0.65)∧ swrlb : lessThan(?h, 0.85)

Similar considerations apply to office chairs: A chair has a ground parallel
plane to sit on (at a height of around 40 cm) and another perpendicular plane
near it (the backrest). Figure 4 presents, as an example, the ontology representa-
tion of a shelf. The ranges in the properties reflect possible reconstruction errors
or modifications of the actual object that were not represented in the original
CAD model. At the moment, these structural object models are encoded into
OWL-DL by hand; in the future, these could be extracted automatically from
the CAD model or generalized from a set of CAD models.

For each object instance returned by the OWL-DL reasoner, we calculate
axis-parallel bounding boxes and center points of the constituting planes. The
center point of one predefined plane (e. g., the table top) is used to anchor the
position. Information about the orientation depends on the geometry of the
expected models. The intrinsic orientation has to be identified and encoded ac-
cording to the model class. For some objects this orientation is easy to identify,
e. g., chairs where the normal of the back rest defines the orientation of the whole
object. For other objects like tables, we apply a Principal Component Analysis
(PCA) to the points that lie within the plane that defines the intrinsic orienta-
tion. This method delivers two new orthonormal basis vectors that approximate
the orientation within the global coordinate system. For successful matching,
all used models have to be pre-processed to be in a center-point-based local
coordinate system that reflects the assumptions described above.

3.3 Object Hypothesis Verification

In order to verify the generated hypotheses of Section 3.2 we match an appro-
priate CAD model for each hypothesis with the point cloud data. Creating a
3D point surface sampling for a given CAD model yields a point cloud retaining
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Fig. 4: A fragment of the ontology representing a shelf. The range intervals for the
different properties take account of user modifications (someone could have lifted a
shelf board) and reconstruction errors.

the geometric properties of the model. This point cloud in combination with the
initial pose obtained in Section 3.2 allows for a straight forward application of
the ICP [2] algorithm. For more details concerning the surface sampling please
refer to [1]. Since ICP converges in a local minimum, the average correspondence
error between sampled model and scene point cloud can already give a rough
estimate about the quality of the match, i. e., if a hypothesis could be verified
or not.

Although this approach might correctly reject some false hypotheses, many
scenarios are plausible in which the average correspondence error between sam-
pled CAD model and data point cloud is small but still the object is not present
in the scene. To have a better estimate to determine if an object is present in the
data points we therefore propose another heuristic measure. For this heuristic
we change the perspective compared to the ICP algorithm used to obtain the
final pose: Instead of fitting the sampled model to the point cloud data we now
check how closely the point cloud data resembles the sampled model data in the
model’s final pose. To this end we discretize the model data into voxels, thus
creating a more coarse representation of the model. Now we check how many
data points of the scan data are contained in each of these voxels in the final
pose determined by ICP. If the number of data points in such a voxel is larger
than a given threshold, we assume that this part of the model was present in
the scan data, otherwise the point cloud locally does not fit. Once this process
is done for each voxel, we compare the ratio of voxels resembled in the scan to
voxels not present in the scan data. If this ratio is above a given threshold we
assume that the model was present in the scan data.

However a more sophisticated measure to compare the CAD model in its
final pose with its surroundings is topic of ongoing research.



4 Experimental Results

For our test scenario, we use a database of CAD models that is directly avail-
able from our university’s furniture manufacturer. We present an example for
automatically recognizing furniture using our model-based object recognition
method: Finding two office table CAD models in a 3D point cloud of an office.
The first part displays the instantiation of the object hypotheses from our hy-
pothesis generation method. The second part shows pose refinement for these
instances derived from the ICP-based hypothesis verification step.

4.1 Hypothesis Generation

The input to our reasoner is a set of planes that were extracted from the input
data. Figure 5 shows the input point set for our experiments together with
a surface reconstruction. The data was obtained using a SICK LMS-200 laser
scanner mounted on a rotational unit. Several scans from different positions were
registered via ICP into a single point cloud. The planar structures found in the
scene are rendered in a red to blue gradient, all other surfaces are green. The basic
characteristics of these patches (centroid, normal, bounding box, area) are used
by the reasoner to identify possibly present models. The current implementation
of our plane extraction procedure is highly optimized for parallel processing and
scales well with the number of CPU cores. The objects in the presented data set
are extracted in less than 4 seconds on a Intel Quad Core processor, including
normal estimation for the data points, mesh generation and plane extraction.
This time is in the order of magnitude that it takes to capture a single 3D laser
scan with our equipment.

As one can see, the large connected surfaces on the floor are recognized,
as well as smaller structures like the tabletops (gray) or the backrests of the
chairs around the conference table (red, blue, light green). After feeding the
extracted planes into the reasoner, two possible present objects were detected:
The conference table on the right and the desk on the left. The main remaining
problem is to determine the model’s orientation. To solve this, we use a PCA
implementation by Martagh [8] on the vertices of the table top reconstruction.
To analyze the stability of this approach, we rotated a reference model of the
conference table to different predefined angles to get ground truth and compared
the original rotation angles with the PCA estimation. The results are shown in
Table 1. The time for PCA computation for the considered planes is negligible for
our application (some 100 milliseconds). Although the estimated poses derived
from the bounding box show several degrees difference from ground truth, we
were able to correct these deviations automatically via ICP and confirm the
detected objects in the scanned scene as shown in the following section.

4.2 Hypothesis Verification and Model Replacement

After the object hypotheses and pose estimations are generated, we subsample
the corresponding CAD models. This synthetic point cloud is then used to refine
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Fig. 5: The used input point cloud (a) and the automatically extracted planes (b). The
detected planes are colored in a red to blue gradient based on a running number. All
surfaces that were not classified as belonging to a plane are rendered in green. Walls and
ceiling in the original data set were manually removed to create a suitable perspective.

Table 1: Estimated orientations for two table models via PCA compared to ground
truth.

Ground Truth 12.0◦ 25.0◦ 55.0◦ 90.0◦ 125.0◦ 160.0◦

Conference Table 8.2◦ 22.1◦ 51.4◦ 86.0◦ 121.0◦ 157.0◦

Office Desk 4.0◦ 28.1◦ 46.7◦ 82.0◦ 118.0◦ 153.0◦

the initial pose estimation. Figure 6 shows the results of the matching process
for the tables that were detected in the given scene. The pictures on the left
clearly show that the ICP process significantly improves the estimated poses.
For the conference table we get an almost perfect fit. The fit for the office desk
is not as good as the one for of the conference table. Here we have an offset to
the right of about two centimeters. This is due to registration errors in the used
point cloud and differences between the CAD model and the real world object.
The real object shows clearances that are not considered in the model.

These two examples show that our ICP based object hypotheses verifica-
tion procedure is able to instantiate the presumed objects from the OWL-DL
reasoner. This instantiation provides additional semantic knowledge about the
scanned environment, namely that there are an office table and a conference ta-
ble present. Furthermore, the replacement of the original point cloud data with
the appropriate CAD models of the recognized objects can be used to enhance
the initial sensor data, e. g. by filling in missing data points from laser shadows
by sampling the surfaces of the CAD model.

This fact shows another advantage of model based object recognition over
appearance based methods. These methods usually do not encode the whole
geometric information of the trained objects, only the abstract characteristic



Fig. 6: Results of the ICP model matching process for the two table models. The left
column shows the pose of the conference table before and after matching. The offset
of the initial pose estimation from the final pose is indicated by the black arrows at
the lower edge of the table. The picture on the right shows the CAD models of both
detected tables rendered in the original point cloud.

feature descriptors for the used machine learning algorithm. Although a link
between these features and more detailed object descriptions is feasible, the
handling of these relations requires additional efforts. With our model based
approach we have the geometric properties already encoded in the CAD models
themselves.

5 Summary and Future Work

We have presented initial results on a model-based method for recognizing fur-
niture objects in 3D point clouds, based on CAD models, and demonstrated the
viability of this approach on a real-world example.

In the future, we plan to extend this approach in several directions: First,
we plan to explore alternative representation formalisms for the object hypothe-
sis generation step. In particular, Statistical Relational Models offer themselves
here due to their potential robustness to occlusions or false positives in the sensor
data. Second, more work needs to be done on the error function of the hypoth-
esis verification step. Third, we intend to expand the approach to articulated
furniture (such as a cabinet with sliding or hinged doors, chairs and tables with
adjustable height) and variability (such as a bookshelf with a variable number



of shelves). One way to do this would be to use parametric CAD models. Fourth
and last, we plan to automate the extraction of OWL-DL structural models for
hypothesis generation from the CAD models.
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