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Abstract

Executing high-level tasks in a fetch-delivery-scenario (e.g.,“Robot, bring me a muffin!”) requires a robot to reason
about what the desired object is and where it is located. At best, the underlying map to plan and execute such tasks
allows for a close linkage of geometric and semantic information and efficient look ups. Geographic Information
Systems combine relational and geometric data in one database and can serve as powerful backends for semantic
mapping, because of their in-built ability to handle spatial queries. In this paper, we present a GIS-based approach to
semantic mapping that allows semantic labels to be integrated closely with geometric environment maps. We show
that our semantic map is suited to store and maintain information that supports complex task planning, as well as other
tasks. As an example, we show how robot navigation can be improved by including semantic information.

1 Introduction

Fetch-delivery-scenarios are commonly posed bench-
marks for autonomous robots, because they require the
integration of different domains. In the following, such a
scenario triggered by high-level commands, like “Robot,
bring me a muffin from the kitchen!”, will be consid-
ered. To execute such a command, a robot has to solve
a sequence of problems: Besides understanding the given
command, it is most crucial to reason about what the de-
sired object is and where it is located with respect to the
robot and the destination. Based on this information a
suitable decomposition of individual actions can be ex-
ecuted. For this, an extensive set of techniques rang-
ing from localization, navigation, spatial reasoning, task
planning to object identification and manipulation, has
been developed in the past. Usually, these functionalities
are individual components that, though interacting with
each other, operate on separated data.

The idea of semantic maps promises to bring semantic,
topological and geometric information closer together by
building maps that merge this information to support task
planning and reasoning. However, the notion of seman-
tic maps can be extended to include a variety of other
robotic functionalities. We contribute to this topic by pre-
senting a new architecture that suites this extended no-
tion. To illustrate the capabilities of our approach, we
chose robot navigation as a showcase project for our ex-
periments, since navigation is essential to fetch-delivery-
tasks. Figure 1 shows how our architecture combines
semantic mapping and robot navigation within this pa-
per. The structure of the text follows the depicted data
flow. At first we introduce Geographic Information Sys-
tems (GIS) as database backends for semantic mapping
() and discuss how they can be used to combine the ge-
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ometry, topology and semantics of an environment (8).
We will describe how our semantic map is structured and
how it can provide the necessary information for planning
a robot’s path on a topological level €1). To subsequently
execute the path, we show how the geometric and seman-
tic content of our robot map is used to extract augmented
navigation maps (€2. As these maps conform with stan-
dard robot navigation techniques used in the ROS frame-
work [1], we demonstrate how the extracted maps are
used to implement navigation with in both 2D and 3D
collision awareness (D).
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Figure 1: The proposed semantic mapping framework is
based on a GIS database that holds geometric, semantic
and topological information and can be used to extract se-
mantically annotated grid maps used in robot navigation.
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2 Related Work

Robot navigation is a well-studied field with efficient
methods publicly available. Two-dimensional grid map
and grid map based cost maps have become standard so-
lutions for self-localization, and motion planning and ex-
ecution, respectively. Within the ROS framework, the
gmapping package based on work by Grisetti et al. [2]
solves the SLAM problem to create grid maps from 2D
laser data. These grid maps are used in the amcl and
move_base packages based on [3, 4], that implement
localization and navigation. Despite their robustness and
high performance, these 2D approaches have two ma-
jor drawbacks: First, the used maps are only 2D and
can represent 3D information at best indirectly. Sec-
ondly, these approaches are most often detached from 3D
data processing, e.g., object recognition and manipula-
tion pipelines.

Addressing the first issue, Hornung et al. [5] proposed a
method to surpass the 2D limitation by extracting mul-
tiple 2D layers out of an octree based 3D representa-
tion [6]. By dividing the 3D navigation problem into
multiple 2D sub-problems that take the robot’s 3D ge-
ometry into account, they were able to efficiently solve
planning tasks in 3D. The underlying octree can be used
to represent the environment for both navigation and ma-
nipulation. However, the presented approach relies on a
geometrical environment representation only. Semantic
mapping addresses this issue by adding topological and
semantic information.

Various approaches to semantic mapping have been de-
veloped, but have not yet merged to a standard solution.
Some approaches concentrate on integrating topological
information within a semantic map. Bastianelli et al. [7]
recently showed how to combine semantics and topology
to support high-level task execution like global path plan-
ning or object manipulation. Their topological navigation
is based on semantically annotated 2D maps acquired via
2D SLAM and a human instructor, who labels objects
and locations. Other approaches concentrate on the au-
tomatic collection of semantics. Works like [8] showed
how different types of rooms can be identified by means
of analyzing visual cues and geometric features, like area
and shape in 2D.

Semantic mapping in 3D is often done by using a 3D
model of the environment with semantic annotations to
solve complex manipulation tasks [9] or focuses on au-
tomatic symbol grounding of complex geometric objects,
like furniture recognition [10], CAD-matching [11] or au-
tomatic extraction of a room’s geometry [12]. Within
this line of work, choosing a 3D data format is of im-
portance. Traditionally, point-based data formats domi-
nate the robotics community. Creating geometric maps of
large-scale environments with point data can be demand-
ing in both memory and time consumption since a large
number of point samples has to be processed. Therefore
using other data formats is beneficial. Especially mesh-
based geometric models can increase efficiency by mod-
eling continuous surfaces. The Las Vegas Reconstruction
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Toolkit (LVR) [13] is able to calculate compact, yet ge-
ometry preserving triangle meshes from point clouds. In
the semantic mapping context, this data format is of ad-
vantage, as it can be efficiently clustered and segmented
due to the internally used linked data structures.

All these advances towards semantic mapping cover fruit-
ful approaches, but combining the different aspects re-
mains to be done. We want to contribute to this by in-
troducing a new database backend to combine different
layers of data. Here we show how semantic mapping in
3D can be a tool to make the various robotic function-
alities more consistent by using one common data pool
and exemplify this by improving robot navigation using
semantic information.

3 Semantic Mapping Framework

Classically, semantic mapping is understood to support
task planning and reasoning: “A semantic map for a mo-
bile robot is a map that contains, in addition to spatial in-
formation about the environment, assignments of mapped
features to entities of known classes. Further knowledge
about these entities, independent of the map contents, is
available for reasoning in some knowledge base with an
associated reasoning engine.” [12].

In this paper, we promote the idea of using semantic maps
as data source for a multitude of tasks. To support this
idea, we directly address the first part of the definition by
Niichter et al. [12] and focus on how to represent, store
and manage the content of semantic maps. We will show
how our system supports both practical robotic tasks, as
well as knowledge-bound reasoning, mentioned in the
second part of the definition. We combined semantic
mapping, topological path planning and robot navigation
in an integrated system implemented in ROS.

3.1 Requirements

A semantic map is intended to provide information about
an environment by joining geometric, semantic and topo-
logical information. The stored information must be re-
trievable in a way that enables the robot to plan interac-
tions with the environment. An ideal map must support
dynamic updates and is independent of the robot’s ge-
ometry. It is a multi-purpose map with several different
information levels, hence the different layers must be ac-
cessible quickly. Queries that ask for just one type of in-
formation, as well as complex combinations that involve
different modalities must be enabled. To fulfil these re-
quirements, we use the Geographic Information System
PostGIS.

3.2 Geographic Information Systems

Geographic Information Systems (GIS) are designed to
manage content of geometric nature in combination with
additional data. PostGIS, for example, is a derivate of
PostgreSQL that adds specific data structures to effi-
ciently store and query geometric information. It can
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combine standard SQL-queries with geometric queries
and allows to link geometric and contextual information
in a common database. The built-in functionalities al-
low to derive spatial relations between stored facts such
that more complex information can be derived from the
database than the explicitly stored facts. The ability
to create and execute geometric queries make GIS-type
databases very suitable within the semantic mapping con-
text, as they match the given requirements we defined be-
fore.

3.3 Database Content

We designed our PostGIS database @ in a way that ev-
ery entry inherits from a base structure that binds geomet-
ric, semantic and topological information. This structure
is two-fold. At first, it consists of an /D that uniquely
identifies the entry within the database. The ID is used
to link entries with each other or to communicate about
the database content in modules outside of the GIS archi-
tecture. Secondly, to form a model of the environment
within the semantic map each entry contains a triple of
the following components:

eometric model that defines the shape of the entr;
Ag j del that defi he shape of th y
and its pose with respect to the map origin.

Geometry can be represented by several different data
types, e.g., triangle meshes or point clouds can be
used to describe objects and rooms. Even more ab-
stract geometries like bounding boxes or references
to other geometric sources like a database of CAD-
models can be used, as long as they can be expressed
in relation to the map’s origin.

A semantic type that describes the semantic meaning
of the entry and optionally a set of properties that ad-
ditionally specify an entry.

The semantic type ties perceived real world objects to
concepts represented in the background knowledge.
For example, a classical T-Box can be used to give
background knowledge and a comprehensive descrip-
tion of concepts named by the semantic type. A
matching A-Box can store all the features of the dis-
tinct object instances. The properties allow to change
the robot’s behaviour with respect to the specific se-
mantics of a concept’s instance. The database ID can
be used to link between the semantic map and the A-
Box entries. This representation allows to reason over
real world instances that were grounded by sensory
perception.

A set of topological links that defines the spatial rela-
tions between the entries in the semantic map.

Due to the nature of the GIS, one can differentiate be-
tween implicit and explicit topological information.
PostGIS comes with mechanisms to derive spatial re-
lations by analyzing the geometric models. For exam-
ple, the ST_CONTAINS function can be used to check
if the geometric model of a object is contained in the
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geometric model of a room. This information is im-
plicitly stored. To increase the accessibility of topo-
logical information it is further possible to model the
relations between entries explicitly, by connecting en-
tries and specifying the nature of this connection, as
described in the next section.

To fill the semantic map with content, data of the three
different modalities needs to be provided (8). Note that
each entry should be instantiated on all three domains to
be completely functional. However, it is possible to have
empty domains, e.g., due to missing information during
map creation. The fact that an entry is not fully specified
alone is helpful, as it can be used to encourage further
exploration of the environment.

3.4 Environment Model

Based on this structure, we defined a set of object classes
and implemented a small, but fully functional robot do-
main that allows to execute commands like “move to the
kitchen and fetch a muffin™. For sake of simplicity, in this
paper we consider an office environment that consists of
only one floor. The full setup of our semantic map is ca-
pable of representing a multi-storey building with various
topological connections (e.g., elevators).

Topological Information A floor consists of several
entities with the semantic type Room, which separates the
environment. Each room is associated with a triangle
mesh that represents its geometry and can be associated
with a function by giving a property label, e.g., kitchen.
Elements of the semantic type Door are used to connect
aroom to its neighbours. Each Door holds detailed infor-
mation on how to go from one room to another within its
semantic properties. This information defines the topo-
logical relations, which can be used to plan robot naviga-
tion on a topological level. See Figure 2 for an example.
For more complex environments, other connector types
have been modeled to represent the different topological
transitions which are bound to the predefined robot be-
haviours to handle the transition, cf. Section 5.2.

Objects To make the environment interactive, dynamic
objects of different semantic types like Table and
Muffin were defined. The geometric model of an object
is relevant for guiding object identification or grasp plan-
ning and is either grounded in sensor data or given by a
detailed model retrieved through database-driven object
recognition. Each object belongs to the inventory of a
room or an object that can have an inventory itself, like
tables. By binding objects to inventories, they are explic-
itly grounded in the topology of the environment. Even
though they are already implicitly bound by their pose,
we decided to explicitly store objects in inventories as it
allows for quicker access, e.g., by using a room’s ID to
look up contained objects.
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Regions Another capability of our framework is iden-
tifying regions the robot can interact with. In addition to
the overall semantic types of rooms or objects, it is fur-
ther useful to model the semantics of sub-components of
these entities. We consider a region to be a subset of the
geometric model of either a room or an object. Regions
come from the geometric properties and unite these in
a more abstract way, e.g., surfaces or clusters. Regions
can be found by clustering and surface algorithms. As
regions are entries in the GIS, it is possible to classify
regions with a semantic type (e.g., Staircase) and to
denote their properties. The properties of a region can
invoke specific robot behaviours. For example, a stair-
case that is annotated as blocked can prohibit the robot
to navigate into this part of the room. Navigationally rel-
evant regions like this become important in Section 4.2.

Objects can be used to define regions, too. For example, a
table stored in the semantic map can be surrounded by re-
gions labeled as observational area, which guide the
object recognition.

Figure 2: A visualization of separated rooms that con-
stitute the topology of the environment. Separated rooms
are wrapped with colored bounding boxes.

3.5 Data Retrieval

Using a GIS database as backend for semantic mapping
is especially beneficial when it comes to reading infor-
mation from the map. Using SQL query statements it is
possible to design individual look up procedures for dif-
ferent applications. Due to the relational links between
semantic labels, topological information and geometric
primitives, special queries can be defined to derive useful
information for specific tasks.

The SQL query in Figure 3 demonstrates how to retrieve
information across the different layers in the database.
The statement (a) finds all instances of the semantic type
Table that have a Muffin object in their inventory and
(b) returns the property label of the containing room to-
gether with the table’s name and bounding box.

The query includes a SQL join of tables face, fa_to_ob,
object and inventory. To get all Table objects which hold
a muffin the query contains a join of the SQL tables ob_a
and ob_b over inventory. It fetches the faces of all af-
fected objects and the PostGIS function Box3D returns
the axis-aligned bounding box from the respective trian-
gle collections.
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SELECT ob_a.label, ob_b.label,
Box3D (ST_Collect (face.triangle))

FROM object ob_a, inventory inv_ab,
object ob_b, inventory inv_bc,
object ob_c, face, fa_to_ob

WHERE ob_a.type = ’room’

AND inv_ab.inv_id = ob_a.inv_id

AND ob_b.id = inv_ab.ob id

AND ob_b.type = ’'table’

AND inv_bec.inv_id = ob_b.inv_id

AND ob_c.id = inv_bc.ob_id

AND ob_c.type = 'muffin’

AND fa_to_ob.ob_id = ob_b.id

AND face.id = fa to_ob.face id

GROUP BY ob_a.label, ob_b.label

(a) An example PostGIS query.

Room Object Box 3D
office4 desk4  Box3D(-1.13.8-14,..)

lab2 deskl Box3D(-1.903-14, ...)

(b) Database response for the requested data.

Figure 3: All table objects which contain a muffin in
their inventory are extracted from the PostGIS back end.

This example shows the advantages of using a GIS
for semantic mapping. The information necessary for
processing high level tasks can be retrieved from the
database. The given statement also demonstrates how
explicitly modeled semantic information, as well as im-
plicitly stored geometric information, can be extracted by
one combined query. Generally it is possible to retrieve
all the geometric primitives and bounding boxes of all ob-
jects by their semantic type or properties. Vice versa all
objects with certain properties within a given bounding
box can be queried.

4 Topology Based Navigation

To accomplish a fetch-delivery-task, a robot has to nav-
igate from its current position to the desired object and
back again. The following section shows how the seman-
tic map is used to achieve safe robot navigation invoked
by topological assignments. Hereby the data flow @ to
(©) of Figure 1 will be addressed.

4.1 Planning & Execution

Even though robot navigation finally comes down to
sending the robot from one metric pose to another, it is
helpful to plan a robot’s path on a topological level first.
Especially during the execution of complex tasks, plan-
ning in topological chunks is preferable, since they can be
executed step-by-step to better account for the involved
transitions, like opening a door before moving through it
or using an elevator.

At first, a command like “Move to the kitchen!” needs to
be fed into the planning system. We assume that the plan-
ning unit ©1) is provided with at least the following infor-
mation: the room where the robot resides, which object it
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has to fetch and to which room it has to deliver to. Based
on this information the planning unit calls the semantic
map to get the required topological and geometric infor-
mation, e.g., the Room instances that contain instances of
the desired object type. Once all sub goals are identified,
a path connecting them needs to be found.

Any graph planning algorithm can be used to do this,
once the topological structure of rooms and connecting
doors is extracted from the semantic map. For exam-
ple, we used an answer set programming approach [14]
to plan a sequence of predefined actions that can be ex-
ecuted to solve the given task. The necessary symbolic
information, like the room instances and their connecting
doors, is extracted from the GIS database and fed into the
planner. Figure 4 shows an example of how the robot
can be asked to fetch a Muffin object and bring it to a
distinct Table instance deskl. Note that the exempli-
fied task uses our extended environment model, which
includes an elevator so that the robot can to move from
one floor to another.

goal(t) :— on(t, muffin, deskl)

1, pass_door, (doorl, "labl", "corridorl")

3, pass_door, (door2, "corridorl", "foyer-1lst")

4, call_elevator

5, pass_door, (edoorl, "foyer-1lst", "elevator-1lst")
6, use_elevator, ("floor-1st", "floor-3rd")

7, pass_door, (edoor3, "elevator-3rd", "foyer-3rd")
8, pass_door, (door5, "foyer-3rd", "corridor3")

9, pass_door, (door6, "corridor3", "officed")

10, pickup, (muffin, desk4)

11, pass_door, (door7, "officed", "corridor3")

12, pass_door, (door8, "corridor3", "lab2")

13, place, (muffin, deskl)

Figure 4: An example task that commands the robot
to pick up a Muffin and bring it to the Table instance
deskl.

As solution to the given problems, the planner returns a
sorted set of Door connectors, that specify the transitions
that bring the robot from one room to another. The in-
dividual transitions through a door or from one door to
another can be used to divide the execution of the entire
path into smaller parts. As each door is specified by two
poses that help the robot navigate through the door, each
stage of the path can be executed by handing the goal
poses down to the module that moves the robot (0). In
complex transitions, like calling an elevator or passing
a locked door, the behaviour is handled by appropriate
modules designed to deal with the given requirements.
For the navigation between two metric poses, we use
the ROS package move_base, in combination with the
amcl package that provides sensor-driven localization
(p). Both modules operate on grid maps. move_base
interprets the occupied space within a grid map as obsta-
cles and creates a cost map based on this information. By
inflating obstacles with a suitable padding it is able to cal-
culate a collision aware path between two poses. Further
it manages the execution of the calculated path. amcl
uses a grid map for matching against sensor data.
Usually the underlying maps are created by 2D SLAM
methods (e.g., gmapping) and thus represent only a sec-
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tion of the environment’s geometry. By using 3D geom-
etry stored in the semantic map, we can derive the same
kind of grid maps. But the semantic map allows to gener-
ate even more expressive grid maps by augmenting them
with semantic information. To use this kind of semanti-
cally annotated navigation maps, we implemented a map
extraction method (€2 that we will discuss in the next sec-
tion. Further we use this map extraction method to ex-
tend the standard ROS components to perform collision
awareness in 3D. We present this approach in Section 4.3.

4.2 Map Extraction

To derive grid maps from the semantic map, it is neces-
sary to identify the components that are relevant for nav-
igating the robot. Here the semantic information is of
advantage, because it allows to segment the environment
into navigationally relevant and irrelevant parts. This seg-
mentation can also be used to distribute the different parts
onto individual grid maps, so that they can be treated in-
dependently. For example different obstacle padding can
be applied to different objects. In our implementation
we make use of different layers, that are later joined into
one grid. We use a Room Geometry Layer that contains
only the fixed geometry of the environment (e.g., walls
and pillars), as well as a Blocked Regions Layer, which
contains all regions that are completely blocked for the
robot. Further the Admissible Objects Layer is designed
to include objects the robot is allowed to approach closely
objects by using a low padding, whereas the Lethal Ob-
stacles Layer includes all objects the robot must avoid
and applies a high padding (e.g., Tables that are labeled
as human workplace).

(a) A Staircase region.

(b) The resulting grid map.

Figure 5: The figure shows how a region within the en-
vironment can be semantically annotated to be blocked
for the robot and how this information is translated into
occupied space in the extracted grid map.

The grid maps are created by projecting the geometric
primitives of the relevant parts onto the grid. They can
be retrieved from the GIS by using the semantic types
of the desired components. Depending on the geometric
model of the involved components the projection onto the
grid map slightly differs. Map components that are rep-
resented by triangle meshes, e.g., a room’s geometry, are
included in a 2D occupancy grid by computing all inter-
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sections of the mesh with planes parallel to the the ground
plane. Depending on the use case it is possible to either
“slice” a mesh once, for example to generate a localiza-
tion map, or multiple times to comprise a 3D geometry
into a 2D grid map. In the latter case, the map is cre-
ated by calculating the intersections of multiple planes
along the Z axis between an interval [a, b] with a fixed
increment. The segments that are created when a plane
cuts a face of the mesh are subsequently drawn onto the
grid. A map created by slicing along the full height of the
robot can, for example, be used for collision aware path
planning. Both the slicing of the meshes and the drawing
of line segments onto the grid map includes a discretiza-
tion, but can be refined arbitrarily to the needed resolution
since the base data is continuous. If the geometric model
is a box, as in case of blocked regions, the entire area of
the bounding box can be transformed into occupied space
in the grid map.

In conclusion, the extraction of navigation maps from the
geometric information stored in the semantic map leads
to a more consistent approach to robot navigation, as the
grid maps root in the same data that supports other func-
tionalities, like grasp planning, task planning et cetera.
This distinguishes our procedure from other systems that
rely on grid maps derived from 2D data, which are not
necessarily synchronized with the pipelines that process
3D data. Further the ability to augment the maps with
semantic information is clearly of additional value. The
staircase depicted in Figure 5, for example, could not be
included in a navigational map by considering the envi-
ronment’s geometry along the height of the robot alone,
because it is below the ground floor. Since its seman-
tic label implies that it is blocked, including this region
makes the map more accurate and thus navigation safer.
Another feature of this extraction process is that the scope
of the maps can be set dynamically. The topological plan-
ning divides a given route into distinct parts, thus maps
that span only the currently relevant part can be gener-
ated. As a result of this, only the necessary segments
can be swapped into working memory to reduce memory
consumption.

4.3 3D Navigation

With the grid generation method at hand it is possible to
overcome another problem of classical robot navigation.
Since classically the collision checks rely on grid maps,
it is either incomplete, in the case of maps created from
pure 2D data, or overprotective, in case of maps that have
been created by projecting the entire 3D geometry onto
one grid. Since our grid extraction is fast and can be re-
stricted to cover only the local area around the robot, it
is cheap to create multiple navigation maps which can be
used to implement 3D collision awareness.

Hornung et al. introduced the idea that multiple grid maps
can be used to reduce the problem of checking for colli-
sions in full 3D to several 2D sub problems [5]. Their
approach is based on the idea that a robot’s geometry can
often be segmented into several segments that can be rep-
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resented by their own collision map. Such a decomposi-
tion allows to better account for the robot’s 3D geometry,
as each robot part can be checked individually.

We followed these ideas and slightly extended the stan-
dard ROS components to allow for 3D aware planning
with multiple 2D layers extracted from our GIS database.
We sorted the kinematic links that make up our robot into
functional units, e.g., the arm, the base structure and the
pole that mounts the sensors. These units can be used to
dynamically derive the “slicing” intervals [a,b] C Z by
using the upper and lower bound of such a unit.

Figure 6: A geometric decomposition of the robot can
be used create multiple cost map layers to respect the 3D
geometry during motion planning. The colors of the dif-
ferent sections match the ones in Figure 7.

The resulting intervals are used generate grid maps of the
environment’s geometry, so that only the geometry that
affects this part of the robot will be included in the col-
lision map of this functional unit. An illustration of this
segmentation can be found in Figure 6. Here we also in-
clude the semantic information relevant for the different
sections. The resulting grid maps are used to create indi-
vidual cost maps for each robot component.

Usually, move_base operates on a single cost map that
can consist of different grid layers, but allows for only
one type of obstacle inflation. We extended the imple-
mentation to allow cost maps that consists of different
cost maps, which all have their individual inflation level
and set of grid map components (e.g., the layers defined
in Section 4.2). To correctly inflate the obstacles in the
cost map of each robot part, it is necessary to derive the
individual footprints of the different functional units.
The respective footprints can be calculated dynamically
from the robot’s current kinematic state. Given a geo-
metric description of the robot and its current configu-
ration, the geometry of each functional unit can be pro-
jected onto a 2D plane. The convex hull of this projec-
tion can serve as footprint for the respective robot part.
Figure 7 shows how we divided the robot into three func-
tional units and show the different footprints that were
derived from the robot’s kinematic state.

Each footprint is used to calculate the inflation radius that
expands the obstacles in the respective cost map layer, as
discussed in [4]. Note that if the robot’s configuration
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changes, the footprints and the corresponding cost maps
will be updated automatically. Finally, the different cost
map layers are combined to one master cost map that is
used for motion planning. Since for each robot part was
accounted for by inflating its respective layer with a suit-
able radius, the master map can be seen as the terrain a
dot-shaped robot is allowed to navigate in. We use this
master cost map to implement a simple 3D aware robot
navigation with the standard move_base package.

Our setup is not as expressive as the one by Hor-
nung et al., since it does not take a robot’s motion prim-
itives into account during the planning process. The ap-
proach in the original paper allowed holonomic robots to
slide through highly cluttered terrain. However our sim-
pler approach suits the need of our non-holonomic robot.
Due to the different cost maps it is possible to navigate the
robot arm above the table, while part of the base structure
is moved below the table top, as can be seen in Figure 9.

Figure 7: The figure shows the different robot parts and
their individual footprints. The base structure mount-
ing the arm is represented in green. The arm’s footprint
is shown in red, whereas the footprint of the pole that
mounts the robot’s sensors is visualized in blue.

S Experiments

As mentioned before the presented approach to seman-
tic mapping was implemented in ROS. By defining in-
terfaces between the PostGIS database, our topological
planning module the custom-made map extraction mech-
anism and the standard ROS navigation components, we
created an integrated system. In the following, we will
briefly describe how we use a pair of robots to, first, build
the semantic map and, second, to fetch and deliver small
objects.

5.1 Building the Semantic Map

To gather data for the semantic map, a mobile robot plat-
form equipped with a rotating 2D laser scanner that peri-
odically outputs 3D point clouds of the environment was
used. The original data was collected in a semi-automatic
mapping procedure that consists of sending the mapping
robot to a sequence of scan poses. Using 3DTK’s SLAM
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algorithms [15], the different scans are fused into a com-
mon geometric map. The nodes of the topological graph
are created during the mapping run by annotating the in-
coming data on-the-fly with the Room instance’s ID. To
get the full topological representation of the environment
the topological connections (e.g., the Door instances) are
specified manually. To annotate rooms, objects and re-
gion with their semantic types and properties, we devel-
oped a set of plug-ins for the ROS visualization tool RViz.
Note that this information can in principle be extracted
without user interaction as well. For example by us-

ing the automatic segmentation processes, like described
in [10,11] or [12].

Figure 8 shows an examples of how a part of the seman-
tic map can be visualized. Note that the colored parts de-
note different objects. The semantic types of the objects
are visualized as well.

Figure 8: The figure shows a 3D mesh annotated with se-
mantic labels. The labeling was done by hand using our
RViz label tools.

5.2 Using the Semantic Map

As our semantic map is robot-independent, it can be used
by multiple robots. So to test out our semantic map we
commanded the robot shown in Figure 7 to perform dif-
ferent fetch-delivery-tasks, since its 5 DOF manipulator
is able to pick and place small objects. We used the
robot within a multi-storey building and to support transi-
tion between different floors, with additional topological
connections to enter and operate the elevator. To enable
the robot to manipulate small objects, we further imple-
mented a simple pick and place application. Within this
extended domain, we commanded the robot to perform
tasks of different complexity.

To provide missions to the robot, we rely on a state ma-
chines that waits for user input, calls the planning unit
and delegates the execution of individual actions, which
are identified by the planning unit. We implemented dif-
ferent protocols that implement certain kind of task by
using different retrieval queries to get the relevant infor-
mation from the GIS database. One on these is designed
to used the topological navigation module only, for ex-
ample, by sending the robot to distinct rooms naming
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their ID ("Move to office2."). Another commands the
robot to move to a certain type of rooms by using the
semantic properties during database retrieval ("Move to
a kitchen"). We also implemented a homing behavior
by labeling a regions within our lab map as home. If the
robot is commanded to go home, a path to the lab planned
and finally the robot moves into it’s home by drawing an
admissible pose from the given region. To include the
other robot functionalities, we further implemented query
statements to determine the topological location and ex-
act poses of objects. This allows the robot to first move to
the desired room and at arrival to start the object manip-
ulation pipeline with the absolute location of the object.
In order to come up with a solution to these given tasks,
the controlling state machine extracts the entire topology
and object content of the environment from the seman-
tic map and provides them to the answer set program-
ming solver, which subsequently calculates a plan, c.f.
Figure 4. The derived actions are sequentially handed
down to several subordinate state machines that enable
the robot to perform the required action.

During the execution of the different tasks, our seman-
tic map proved to be a reliable source to provide all the
necessary data for the different components.

Figure 9: Due to the different collision maps it is possi-
ble to move the robot’s base under the table.

6 Conclusion

This paper presented a general architecture for semantic
mapping that supports planning and executing complex
tasks by drawing all necessary information from a seman-
tically annotated 3D representation. We showed how GIS
databases can lead to a desirable link between geometric,
topological and semantic information and how they can
be use to retrieve data across the different domains by
using mixed query statements. We further proved that se-
mantic mapping can be useful beyond knowledge-based
applications, by using the map to provide the necessary
grid maps for the navigation modules. We demonstrated
how the mesh data that is used to represent the environ-
ment’s geometry is suitable to extract grid maps from the
semantic map. By including semantic information into
the grid maps we exemplified that semantic maps bring
useful information into the domain of robot navigation.

For future work, we intend to extend the connection be-
tween the semantic map and the robot navigation mod-
ules to support the object manipulation pipeline. Using
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the 3D collision aware navigation coupled together with
grasp planning techniques will allow to directly infer suit-
able approaches towards an object. Further we intend to
couple our GIS back end to a full-fledged reasoner with
a suitable background knowledge to make our semantic
map more expressive.
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