
Building Semantic Object Maps from Sparse and Noisy 3D Data

Martin Günther, Thomas Wiemann, Sven Albrecht and Joachim Hertzberg

Abstract— We present an approach to create a semantic
map of an indoor environment, based on a series of 3D point
clouds captured by a mobile robot using a Kinect camera.
The proposed system reconstructs the surfaces in the point
clouds, detects different types of furniture and estimates their
poses. The result is a consistent mesh representation of the
environment enriched by CAD models corresponding to the
detected pieces of furniture. We evaluate our approach on two
datasets totaling over 800 frames directly on each individual
frame.

I. INTRODUCTION

Building 3D maps of indoor environments by mobile
robots has received increasing interest since the launch of
inexpensive 3D sensors such as the Microsoft Kinect. Several
successful approaches exist that generate 3D point-cloud
maps (e. g., [1], [2]) or mesh representations (e. g., [3])
based on RGB-D data. Nevertheless, automatically providing
additional semantic information to the maps, such as location
and type of furniture present, is still an unsolved problem.
This kind of semantic information however is necessary for
many advanced tasks of an autonomous robot, such as object
search or place recognition. Also, it has advantages for the
map building process itself: If the class and location of
objects in the map are known, CAD models can be used to
complete missing sensor data, or loops can be closed based
on semantic in addition to geometric information.

This paper presents an approach to semantic mapping that:
1) reconstructs the surfaces from noisy 3D data, captured

from a single frame of a Kinect camera, and creates a
triangle mesh;

2) recognizes furniture objects in the point clouds;
3) and finally adjusts their poses using ICP, and augments

the created map with their corresponding CAD models.
In our previous work [4], [5], we have shown preliminary

results using 3D laser scanner data obtained by manually
placing the laser scanner in several positions in an office
scene. In this paper, we extend the previous work to frame-
based semantic analysis of Kinect data. The motivation for
the frame-based approach is that it allows for an online
analysis of the perceived data. In the future, this can be
utilized to explicitly gather new data in an attention based
fashion and to close the loop between data interpretation

All authors are with the Institute of Computer Science, University of
Osnabrück, Albrechtstr. 28, 49076 Osnabrück, Germany. Joachim Hertzberg
has a second affiliation with the DFKI Robotics Innovation Center, Os-
nabrück Branch, 49076 Osnabrück, Germany. This work is supported by
the RACE project, grant agreement no. 287752, funded by the EC Seventh
Framework Programme theme FP7-ICT-2011-7.

{martin.guenther, thomas.wiemann, sven.albrecht,
joachim.hertzberg}@uni-osnabrueck.de

and gathering. Using state of the art SLAM algorithms,
these annotated point clouds can be easily used to maintain
a consistent semantic map of the complete environment.
The system is evaluated extensively on two different dataset
consisting of a total of 810 point clouds containing six
different classes of furniture.

II. RELATED WORK

Several approaches exist that build geometric maps from
3D point clouds. Nüchter et al. [6] present a 3D SLAM
approach that can build a consistent map from arbitrary 3D
point clouds. Endres et al. [1], Henry et al. [2] and May et
al. [7] propose 3D SLAM approaches exploiting the specific
characteristics of RGB-D cameras to improve the registration
quality. Biswas and Veloso [8] also developed a 3D mapping
system geared towards RGB-D cameras, but instead of a
point cloud map, they create a map of the planar regions in
the environment. The KinectFusion algorithm by Newcombe
et al. [3] instead creates a mesh from RGB-D data in real
time, but is limited to a constrained volume.

In the field of semantic mapping, several authors have
proposed algorithms that label point clouds with semantic
information. For instance, Rusu et al. [9] detect several types
of furniture and approximate them as cuboids. Nüchter and
Hertzberg [10] classify coarse structures (walls, floors, doors)
using a semantic network and detect smaller objects using
a trained classifier. Mason and Marthi [11] autonomously
build a semantic object map over a long time span, focusing
on small and medium-sized objects instead of furniture.
Neumann and Möller [12] investigate the use of description
logics for high-level scene interpretation tasks. Similar to our
approach, Pangercic et al. [13] build a semantic map based
on furniture CAD models.

CAD models have been used for object recognition before.
For mass-produced objects, ranging from furniture over
household appliances to tableware, CAD models exist and
are widely available – either as the exact model directly from
the manufacturer or as a similar model via sources like the
Google 3D Warehouse. The first approaches in this direction
started in the mid 90’s using vision based sensors [14] or a
combination of a laser projector, a stereo camera and several
additional cameras [15]. These approaches have in common
that they try to recognize objects at a known position, i. e., the
object in question is already centered in the obtained sensor
data and no additional objects or occlusions are present in
the sensor data. A more recent approach on a larger scale is
presented in [16], where several matched 3D laser scans of
a construction site are compared to a model in order to track
progress and detect divergences between model and actual

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 2228

construction site. A prerequisite for this work is a correct
model in advance, i. e., it is known what the sensors are
supposed to measure and subsequently a quantitative analysis
concerning the differences between expected measurements
and received measurements is performed. In contrast to
these approaches we neither demand a complete model of
the perceived scene nor do we require the exact poses of
candidates for object recognition in advance, but employ
general domain knowledge to generate object hypotheses and
use CAD models to refine these. From this characterization,
our approach is similar to the work of [17], [18], [19]. The
major difference to [17] is that we perform the actual CAD
matching with the 3D environmental data instead of 2D
image data. In [18], the authors use CAD models to create
synthetic point clouds of several types of furniture and extract
geometric features which are used to build a vocabulary of
objects via machine learning techniques. After a probabilistic
Hough voting step to generate likely object hypotheses, they
apply a RANSAC approach to fit the objects into the scene
and confirm / refute their hypotheses. They also work on
individual frames (like our system does). Lastly, the work in
[20] should be recognized, which reports promising results
in object labeling using full RGB-D information (color and
depth). However their work focuses on streams of registered
point clouds and thus the available data is usually much more
complete than from a single frame.

III. MODEL BASED OBJECT RECOGNITION

The system consists of three steps: (1) surface reconstruc-
tion transforms the input point cloud into a triangle mesh and
extracts planar regions; (2) the planar regions are classified,
furniture objects detected, and an initial pose estimate based
on the planar regions is calculated; (3) the final pose is
computed using ICP, and the corresponding CAD model
placed in the scene. Fig. 5 exemplifies these steps.

A. Surface Reconstruction

The plane extraction for object recognition is done on a
mesh representation of the surfaces captured with the Kinect
camera using the Las Vegas Surface Reconstruction Toolkit
(LVR) [21], [22]. LVR provides an open source C++ library
with implementations of several algorithms for polygonal
map generation. The surface reconstruction process mainly
consists of two steps: initial mesh generation using Marching
Cubes followed by a post-processing pipeline of several mesh
optimization and segmentation algorithms.

Mesh generation is done using an optimized Marching
Cubes implementation that utilizes Hoppe’s distance func-
tion [23] to estimate an isosurface representation of the point
cloud data. To generate this isosurface, surface normals for
the data points have to be estimated. This is done using
an adaptive RANSAC-based approach that is optimized for
sparse data sets containing Kinect specific discretization
effects and noise [22].

To approximate a triangle mesh representation to the iso-
surface defined by the points and normals, a modified March-
ing Cubes algorithm is used. This initial mesh is enhanced

by several mesh optimization algorithms. To remove artifacts
based on outliers in the point cloud data, small clusters of
connected triangles are automatically removed. Furthermore,
LVR delivers a hole filling procedure to close holes in
the mesh that result from occlusions. After initial mesh
generation, hole filling and outlier removal, connected planar
patches in the mesh are extracted. The planar segmentation
is done via a region growing approach, which has to check
each triangle only once (as described in [22]).

The output of this algorithm is a set of planar clusters
that can be used to generate the model hypotheses for the
object recognition process. For this step, the actual size of
an extracted plane is needed. In contrast to point clouds, the
exact area can be easily computed in a mesh representation
by summing up the areas of the created triangles. In real-
life application scenarios, the interesting surfaces of furniture
will usually be populated with objects on top of them,
especially in table top scenarios. For example, take a laid
breakfast table where the table top contains dishes, bowls and
various other objects that are needed for a proper breakfast.
These objects will certainly create occlusions and holes in the
reconstruction of the table top plane. As long as our region
growing algorithm can find connected patches of the surface
between the present objects, we will get a representation
of that area, but the estimated area will be significantly
reduced due to the occlusions. To restore the initial plane, we
extract the contours of the holes in the plane and the outer
contour. This can easily be done by collecting the border
edges in a half edge mesh representation. To get an optimized
contour representation, we fuse edges on the same line via
contour tracing, using the psimpl library [24]. Once all
contours of a plane are collected, we sort them topologically
to detect the outer contour of the planar region. This contour
is then triangulated using the OpenGL tesselator. This way,
all holes within the plane are closed and we get a realistic
approximation of the area of an occluded planar surface (cf.
Fig. 2).

This approach works fine as long as the outer contour is
not interrupted by shadows of present objects. In this case,
the shadow might break the outline and create a bay in the
contour which in turn will decrease the estimated surface.
Alternatively, one could use a convex hull approach to
estimate a surface, but by doing so the surface of non-convex
planes – like the L-shaped desk in the office dataset (Sec. IV)
– would be overestimated. Our approach can be used for
arbitrary shapes. Another problem occurs when a surface is
too populated. In this case, the region growing procedure
will not be able to find a connected remaining surface and
the estimated plane will be split. An approach to solve this
problem is to detect close patches which satisfy similar plane
equations. In these cases, their areas can be summed up.
While these optimizations make the area estimation more
stable, the classification step (next subsection) still needs to
be robust to variations from the true area size. An analysis
to evaluate the robustness of our approach is presented in
Section IV.

2229

B. Planar Region Classification

isa

isa

isa

isa

isPerpendicular*

isa

isa isa

isAbove* isBelow*

isa

isa

isa

isa

isa

isa

isa

isaisa isaisa

LowShelfPlane

TablePlane

HorizontalPlane

HighShelfPlane

Desk

VerticalPlane

MiddleShelfPlane

Plane

ChairSeatPlane

Shelf

ShelfPlane

Table Chair

ChairBackrestPlaneConferenceTable

Furniture

Fig. 1. Parts of the OWL-DL ontology used for classification: classes
(black) and properties (blue).

Once all planar regions have been extracted in the previous
step, those regions corresponding to pieces of furniture have
to be classified. Here, we make use of the fact that most
pieces of furniture are comprised of planar structures that
have a certain size, orientation, height above ground and
spatial relation to each other. These features (and combi-
nations of features) are expressed in an OWL-DL ontology
in combination with SWRL rules.

The Web Ontology Language (OWL) is the standard
proposed by the W3C consortium as the knowledge represen-
tation formalism for the Semantic Web. One of its three sub-
languages, OWL-DL, corresponds to a Description Logic, a
subset of First-Order Logic that provides many expressive
language features while guaranteeing decidability. It has
been extended by SWRL, the Semantic Web Rule Language,
which allows to write Horn-like rules in combination with
an OWL-DL knowledge base and includes so-called built-ins
for arithmetic comparisons and calculations. We decided to
use OWL-DL as the knowledge representation format for this
paper for several reasons: OWL-DL ontologies can be easily
re-used and linked with other sources of domain knowledge
from the Semantic Web, they easily scale to arbitrarily large
knowledge bases, and fast reasoning support is available.
In our implementation, we use the open-source OWL-DL
reasoner Pellet, which provides full support for OWL-DL
ontologies using SWRL rules.

The class hierarchy of the ontology we use here is shown
in Figure 1. The basic classes are Furniture (the parent
class of all recognized furniture objects) and Plane (the
planar regions of which Furniture objects are comprised).
A set of SWRL rules is applied to the extracted planar
regions to assign them classes in the Plane sub-hierarchy;
for example, the lower plane of a shelf can be characterized
by the following SWRL rule:

LowShelfPlane(?p) ← HorizontalPlane(?p)
∧ hasSize(?p, ?s) ∧ swrlb:greaterThan(?s, 0.01)
∧ swrlb:lessThan(?s, 0.5) ∧ hasPosY(?p, ?h)
∧ swrlb:greaterThan(?h, 0.08)
∧ swrlb:lessThan(?h, 0.18)

These rules are not exclusive, so one planar region
can receive multiple labels (e. g. MiddleShelfPlane and
ChairSeatPlane). The definitions of the classes in the

Furniture sub-hierarchy refer to these labels; e. g., the fact
that a Shelf consists of three planes on top of each other
can be stated as:

Shelf ≡ LowShelfPlane and
(isBelow some (MiddleShelfPlane and

(isBelow some HighShelfPlane)))

Likewise, chairs are defined by a seat and a backrest, both
with certain sizes, orientations, heights above ground and
which are perpendicular to each other.

For each detected object, initial position and orientation
are estimated. The position is always the centroid of their
main plane. Since chairs have two perpendicular planes (the
backrest and the seat), a unique orientation can be calculated
by the difference vector between the centroids of those
planes. For tables and shelves, the PCA of their main plane
is calculated to define the orientation.

C. Final Pose Adjustment and Model Replacement

The initial pose estimate calculated in the previous step is
potentially inaccurate, since it wholly depends an abstraction
of the recognized objects as a set of planar regions. To
improve the pose estimate, we perform ICP matching of the
appropriate (sampled) CAD model with the original point
cloud data. This process is described in detail in [5].

IV. RESULTS

We performed two experiments to evaluate the robust-
ness and accuracy of our recognition system. First, we
investigated the effectiveness of our hole filling procedure
separately to see whether it is capable of estimating the
true surface area of a table under the influence of increasing
amounts of clutter. Second, we evaluated the detection accu-
racy of our complete system on two series of point clouds
captured by a mobile robot.

A. Robustness Against Occlusion

In real life applications, furniture is usually used to store
objects, so an obvious problem for our detection procedure
is that the surfaces relevant for recognition may be partially
occluded. To evaluate the robustness of the surface extraction
procedure against occlusions, we gradually added typical
objects like books, cups and bottles to a table surface and
tried to segment the table top. The results of this experiment
are shown in Fig. 2 and Table I. The estimated area remains
close to the ground truth area even for significant amounts
of clutter; only when the outer contour is disrupted, the area
estimation breaks down.

B. Complete System

To evaluate our recognition system, we captured two series
of point clouds from a Kinect camera mounted on a mobile
robot (see Fig. 3). In the first scenario, the robot was tele-
operated around an office while continuously capturing point
cloud data at 2.2 Hz, resulting in a total of 431 point clouds.
The office contained 13 recognizable objects from 5 classes
(1 desk, 1 conference table, 1 office chair, 5 conference
chairs and 5 book shelves). For the second dataset, the robot

2230

TABLE I
RECONSTRUCTED AREAS IN THE TABLE TOP EXPERIMENT UNDER INCREASING AMOUNTS OF CLUTTER (RECONSTRUCTED TABLE TOP AREA IN M2

AND AS PERCENTAGE OF GROUND TRUTH). FIRST ROW: ONLY REGION GROWING. SECOND ROW: REGION GROWING + CONTOUR TRIANGULATION.

0 objects 2 objects 3 objects 4 objects 5 objects 6 objects 7 objects 12 objects

Region Growing 1.50 1.47 1.47 1.40 1.35 1.26 1.17 0.95
93% 92% 92% 87% 84% 79% 73% 59%

Contour Triangulation 1.50 1.50 1.49 1.52 1.52 1.52 1.50 1.20
93% 93% 93% 95% 95% 95% 93% 75%

Fig. 2. Segmentation results for a table top setup. First column: the captured
point clouds; second column: initially created triangle mesh; third column:
segmentation results. Triangles that were not classified as belonging to a
planar patch are rendered in green. In each step more objects were added.
In the last line a shadow disrupted the outer contour and the segmentation
broke the table top plane into two clusters.

platform was driven through a seminar room, capturing a
total of 379 point clouds. The objects present in this dataset
are 12 seminar tables and 20 chairs. One challenging aspect
of this dataset is that there is a high level of occlusion.

For both datasets, we registered the point clouds into
a consistent full-scene point cloud, using the SLAM6D
toolkit [6]. The full-scene point clouds were used to gen-
erate the ground truth poses for each piece of furniture
by hand. These poses are used to evaluate the results of
our classification and the ICP refinement step. Note that
the registration information is only used in the evaluation
process; the recognition system itself does not require the
input point clouds to be registered.

Ground truth data for each frame was generated by man-
ually labeling each frame with the information which of the
objects occur in that frame. The ground truth poses of each
object were estimated by manually placing each CAD model
into a scene consisting of the fully registered datasets (see
Figure 4). In combination with the camera trajectory obtained
from the registration process, the ground truth object poses in
each frame can be computed. A detection is considered “true
positive” if its distance to the nearest true object pose of the
same class was below a threshold, depending on the CAD
model’s size (15 cm for chairs, 25 cm for shelves, 45 cm for
tables). If multiple detections fell into that range, only the
nearest was counted as a true positive, and the others as false
positives.

Fig. 4. Overview of fully registered frames. Top: Office dataset (431
frames); bottom: seminar room dataset (379 frames). Note that point color
information is displayed for reader convenience, our approach does not
require it.

Fig. 3. The Kurt robot used for
our experiments.

These high thresholds were
chosen due to the fact that
each point cloud is sub-
ject to considerable sensor
noise, especially near the
limit of the depth camera’s
range. Even if all individ-
ual point clouds are regis-
tered perfectly, there will be
noisy “shadow points” around
each object. Our ground truth
poses are located in the mid-
dle of the noisy point cloud
resembling the object in ques-
tion.

2231

The detection results for both datasets are shown in
Table II. In addition to the detection results, the translation
and rotation error of the initial guess (based on PCA for
tables and shelves, and based on the vector from backrest to
seat for chairs) and the translation and rotation error after ICP
pose correction are shown. Figure 5 depicts some exemplary
object detections for single frames while Figure 4 provides
an overview of the two complete registered datasets.

The detection rates for the single point clouds are accept-
able and show that our approach is not only robust enough
to deal with the noise present in low cost 3D sensors, but
also copes with occlusion and partial visibility, typical for
sensors with a small opening angle. Unexpectedly, the final
ICP pose correction did not improve the average initial guess
on single frames for the first dataset. We attribute this to the
fact that we matched a complete CAD model to a partially
occluded object view; possible solutions are outlined in the
next section. In the second dataset however, ICP clearly
improved the rotation of the chairs compared to the initial
guess created by the SWRL rules.

The results also show varying detection success for the
different classes. Shelves have one of the lowest detection
rates and highest final pose error in our experiments. This
is unsurprising: All shelves in our data set were completely
filled with books, so only a small portion of the actual shelf
was visible. This also explains why the final pose correction
performed worse on shelves compared to the other object
classes. In addition, we currently do not handle aggregates
of objects: If two shelf segments or two tables are positioned
with no gap between them, the planar classification will
combine them into one potential object, with the possible
location at the center of the combined plane. This usually
leads to one false positive (for the non-existent object at the
center location) and several false negatives for actual objects
creating the aggregated plane. Another problematic object is
the big L-shaped desk: The desk is so big that only a small
part of it is visible in most single point clouds.

V. SUMMARY AND FUTURE WORK

We have presented a semantic mapping system that creates
a triangle mesh of an office environment, detects several
classes of furniture, and replaces them by their corresponding
CAD models, based on Kinect point cloud data captured
using a mobile robot. The system was evaluated both on
two datasets containing 810 single point clouds. Our system
achieved a detection rate of 46.0 % for the office dataset,
containing one particularly large object and several seam-
lessly connected instances of shelves and of 79.4 % on the
seminar room with less variation of the classified furniture.

In future work, the most needed improvement is a match-
ing criterion that decides how well a CAD model was
matched in the point cloud. Such a criterion could be used to
reject false hypotheses, and to disambiguate between similar
models.

The performance of the final ICP pose correction could be
improved by explicitly taking occlusion into account. Instead
of trying to match a full CAD model to the point cloud,

a pre-assignment filter similar to [7] could take only those
CAD model points into account which are expected to have
a corresponding point in the sensor data, and vice versa.

Furthermore, we need to improve the generation of the ob-
ject hypotheses, especially in scenes where we detect planes
that are larger than expected due to gap-free placement of
several pieces of furniture. We also intend to implement
an active data interpretation / gathering loop that identifies
and actively explores regions with potentially valuable but
missing data. On top of this it could prove worthwhile
to incorporate the color information provided by RGB-D
cameras when merging planar regions.

REFERENCES

[1] F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers, and W. Bur-
gard, “An evaluation of the RGB-D SLAM system,” in Proc. ICRA-
2012, St. Paul, Minnesota, 2012.

[2] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, “RGB-D
mapping: Using kinect-style depth cameras for dense 3D modeling
of indoor environments,” IJRR, vol. 31, no. 5, pp. 647–663, April
2012.

[3] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J.
Davison, P. Kohli, J. Shotton, S. Hodges, and A. W. Fitzgibbon,
“KinectFusion: Real-time dense surface mapping and tracking,” in
Proc. ISMAR, Basel, Switzerland, October 26-29 2011, pp. 127–136.

[4] M. Günther, T. Wiemann, S. Albrecht, and J. Hertzberg, “Model-based
object recognition from 3D laser data,” in Proc. KI-2011, 2011, pp.
99–110.

[5] S. Albrecht, T. Wiemann, M. Günther, and J. Hertzberg, “Matching
CAD object models in semantic mapping,” in Proc. ICRA 2011
workshop: Semantic Perception, Mapping and Exploration, SPME ’11,
Shanghai, China, 2011.

[6] A. Nüchter, K. Lingemann, J. Hertzberg, and H. Surmann, “6D SLAM
– 3D mapping outdoor environments,” J. Field Robot., vol. 24, no. 8/9,
pp. 699–722, 2007.

[7] S. May, R. Koch, R. Scherlipp, and A. Nüchter, “Robust registration
of narrow-field-of-view range images,” in Proc. SYROCO ’12, 2012.

[8] J. Biswas and M. Veloso, “Planar polygon extraction and merging
from depth images,” in Proc. IROS-2012, Vilamoura, Portugal, 2012.

[9] R. B. Rusu, Z. C. Marton, N. Blodow, M. E. Dolha, and M. Beetz,
“Towards 3D point cloud based object maps for household environ-
ments,” Robot. Auton. Syst., vol. 56, no. 11, pp. 927–941, 2008.

[10] A. Nüchter and J. Hertzberg, “Towards semantic maps for mobile
robots,” Robot. Auton. Syst., vol. 56, no. 11, pp. 915–926, 2008.

[11] J. Mason and B. Marthi, “An object-based semantic world model for
long-term change detection and semantic querying,” in Proc. IROS-
2012, Vilamoura, Portugal, 2012, pp. 3851–3858.

[12] B. Neumann and R. Möller, “On scene interpretation with description
logics,” Image Vision Comput., vol. 26, no. 1, pp. 82–101, 2008.

[13] D. Pangercic, B. Pitzer, M. Tenorth, and M. Beetz, “Semantic object
maps for robotic housework - representation, acquisition and use,” in
Proc. IROS-2012, Vilamoura, Portugal, 2012, pp. 4644–4651.

[14] J. Majumdar and A. G. Seethalakshmy, “A CAD model based system
for object recognition,” J. Intell. Robotics Syst., vol. 18, no. 4, pp.
351–365, Apr. 1997.

[15] C. Brenner, J. Böhm, and J. Gühring, “CAD-based object recognition
for a sensor/actor measurement robot,” IAPRS, HAKODATE, vol. 32,
pp. 209–216, 1998.

[16] F. Bosché, “Automated recognition of 3D CAD model objects in
laser scans and calculation of as-built dimensions for dimensional
compliance control in construction,” Adv. Eng. Inform., vol. 24, no. 1,
pp. 107–118, Jan. 2010.

[17] U. Klank, D. Pangercic, R. B. Rusu, and M. Beetz, “Real-time CAD
model matching for mobile manipulation and grasping,” in 9th IEEE-
RAS Intl. Conf. Humanoid Robots, Paris, 2009.

[18] O. M. Mozos, Z. C. Marton, and M. Beetz, “Furniture Models Learned
from the WWW – Using Web Catalogs to Locate and Categorize
Unknown Furniture Pieces in 3D Laser Scans,” Robotics & Automation
Magazine, vol. 18, no. 2, pp. 22–32, June 2011.

2232

TABLE II
DETECTION RATES

true
positives

false
positives

false
negatives

initial
transl.
error

initial
rotation

error

final
transl.
error

final
rotation

error

precision recall F1 score

(a) office dataset:

Shelf 82 53 237 16.2 cm 5.1◦ 60.1 cm 27.2◦ 60.7 % 25.7 % 36.1 %
OfficeChair 8 19 6 5.8 cm 61.0◦ 6.0 cm 10.8◦ 29.6 % 57.1 % 39.0 %
ConfChair 100 190 114 9.0 cm 51.9◦ 11.0 cm 56.8◦ 34.5 % 46.7 % 39.7 %
Desk 10 11 29 31.6 cm 125.6◦ 53.7 cm 118.8◦ 47.6 % 25.6 % 33.3 %
ConfTable 81 0 0 8.5 cm 8.8◦ 9.4 cm 6.2◦ 100.0 % 100.0 % 100.0 %

total 281 273 386 11.7 cm 28.7◦ 26.2 cm 34.5◦ 50.7 % 42.1 % 46.0 %

(b) seminar room dataset:

Chair 358 26 257 7.3 cm 40.6◦ 8.3 cm 17.9◦ 93.2 % 58.2 % 71.7 %
SeminarTable 522 153 21 9.3 cm 4.7◦ 9.2 cm 3.7◦ 77.3 % 96.1 % 85.7 %

total 880 179 278 8.5 cm 19.3◦ 8.8 cm 9.5◦ 83.1 % 76.0 % 79.4 %

Fig. 5. Results of each step in the processing pipeline for single frames. Columns, from left to right: (a) the original point cloud from a single Kinect
frame; (b) the reconstructed triangle mesh; (c) sampled CAD models after ICP pose correction; (d) the point cloud overlaid with the recognized CAD
models. Top row: error in pose estimation due to only partial visibility of the desk; next two rows: correct placement of the recognized objects; bottom
row: several good matches and one false positive. The color of the models indicates the quality of the recognition: cyan indicates a true positive, where
the pose fits well with the actual pose, magenta is a true positive where the final pose is not well aligned and yellow shows a false positive. The bottom
row shows data from the seminar room dataset, while the other rows depict data from the office dataset.

[19] W. Wohlkinger, A. Aldoma, R. B. Rusu, and M. Vincze, “3DNet:
Large-scale object class recognition from CAD models,” in Proc.
ICRA-2012, St. Paul, Minnesota, 2012, pp. 5384–5391.

[20] K. Lai, L. Bo, X. Ren, and D. Fox, “Detection-based object labeling
in 3D scenes,” in Proc. ICRA-2012, 2012.

[21] T. Wiemann, A. Nüchter, K. Lingemann, S. Stiene, and J. Hertzberg,
“Automatic construction of polygonal maps from point cloud data,” in
Proc. 8th IEEE Intl. Workshop Safety, Security, and Rescue Robotics
(SSRR-2010), Bremen, 2010.

[22] T. Wiemann, K. Lingemann, A. Nüchter, and J. Hertzberg, “A toolkit
for automatic generation of polygonal maps – Las Vegas Reconstruc-
tion,” in Proc. ROBOTIK-12, 2012, pp. 446–415.

[23] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle,
“Surface reconstruction from unorganized points,” Comp. Graph.,
vol. 26, no. 2, pp. 71–78, 1992.

[24] E. de Koning, “Polyline Simplification Library (PSIMPL),” 2010, http:
//psimpl.sourceforge.net/.

2233

