
Towards 6D MCL for LiDARs in 3D TSDF Maps on Embedded
Systems with GPUs

Marc Eisoldt1, Alexander Mock2, Mario Porrmann1 and Thomas Wiemann3

Abstract— Monte Carlo Localization is a widely used ap-
proach in the field of mobile robotics. While this problem
has been well studied in the 2D case, global localization in
3D maps with six degrees of freedom has so far been too
computationally demanding. Hence, no mobile robot system has
yet been presented in literature that is able to solve it in real-
time. The computationally most intensive step is the evaluation
of the sensor model, but it also offers high parallelization
potential. This work investigates the massive parallelization of
the evaluation of particles in truncated signed distance fields
for three-dimensional laser scanners on embedded GPUs. The
implementation on the GPU is 30 times as fast and more than 50
times more energy efficient compared to a CPU implementation.

I. INTRODUCTION

Localization in maps is one of the fundamental problems
in mobile robotics. Many applications like navigation or
exploration rely on a known pose of a robot in a given
map. Multimodal probabilistic methods are the state of the
art for self-localization in GPS-denied, marker-less regions.
The exact calculation of such models is too expensive, so
particle filters are used to approximate the problem. Monte
Carlo Localization (MCL) uses particles to sub-sample the
infinite state space. Global localization with 3D poses in 2D
maps can be efficiently solved with CPUs, as the number
of required particles is small. In realistic applications using
smart re-sampling, only a few thousand particles are required
in 2D.

3D maps can be generated with LiDAR sensors in short
time with high accuracy [1]. LiDAR sensors are small and
lightweight, allowing them to be used on drones [2]. To
localize such vehicles with MCL similar to the 3D case, would
allow to develop autonomous flying systems for GPS-denied
environments without relying on artificial beacons, allowing
new applications for instance in autonomous maintenance and
logistics. With this work, we to provide a MCL implementa-
tion for 3D maps and 6D poses. The challenge is, that for 6D
poses in 3D maps, the number of required samples increases
by several orders of magnitude. Currently, this problem can
not be solved in real-time on standard CPUs. Particle filters
offer great potential to benefit from hardware architectures

1 Computer Engineering Group, Osnabrück University, Osnabrück,
Germany firstname.lastname@uni-osnabrueck.de

2 Knowledge-based Systems Group, Osnabrück University, Osnabrück,
Germany amock@uni-osnabrueck.de

3 Robotics in Computer Science, Fulda University of
Applied Sciences, Fulda, Germany and DFKI Nieder-
sachsen, Plan-based Robot Control, Osnabrück, Germany
thomas.wiemann@informatik.hs-fulda.de

The DFKI Niedersachsen Lab (DFKI NI) is sponsored by the Ministry of
Science and Culture of Lower Saxony and the VolkswagenStiftung

Fig. 1: Our 6D MCL implementation successfully localizes a
robot in a large-scale 3D TSDF map, colored in red and green,
without initial guess. The multimodal particle distribution is
colored in blue and is captured during initialization (A), after
several updates (B) and near conversion to the real pose (C).

that allow massively parallel computations. Accordingly, we
aim to exploit such parallelism on embedded GPUs to achieve
real-time localization.

Localization requires 3D map representations, that support
quick simulation of hypothetical LiDAR data. For that,
Truncated Signed Distance Fields (TSDF) are apt candidates.
They allow to compute the required sensor update efficiently,
i.e., measuring the scan-to-map divergence for a certain
LiDAR measurement at a certain pose hypothesis, as the
closest distances to the surface can be directly read from the
TSDF.

In this paper, we present an approach that leverages those
beneficial properties of TSDF maps and GPUs to achieve
a degree of acceleration that allows to use MCL in 6D on
embedded hardware. We provide our implementation in the
open-source package tsdf localization1 that is fully
integrated with ROS. In our experiments, we evaluate our
software with robots equipped with a LiDAR such as a
Velodyne VLP-16 or an Ouster OS0-64, and TSDF maps
of various environments. Our GPU architecture is able to
speed up the computation significantly compared to the CPU
baseline, while consuming considerably less power. Moreover,
we show that our software is not only suitable for pose
tracking but also for global localization of a mobile robot as
visualized in Fig. 1.

1Available under BSD 3-clause license: https://github.com/uos/
tsdf_localization

https://github.com/uos/tsdf_localization
https://github.com/uos/tsdf_localization

II. RELATED WORK

MCL was first introduced by Fox et al. [3]. It is an
approximation of Markov localization in a 2D grid map and
approximates the set of considered states of the robot with
a particle filter. This significantly increases the performance
of the algorithm and allows a global 2D localization with
up to 5,000 particles on a CPU. Using the Kullback–Leibler
divergence [4], the number of particles can be reduced by
adapting the number of particles dynamically over time (KLD
sampling). Besides global localization, particle filters are also
used in Simultaneous Localization and Mapping (SLAM)
algorithms to track the position of the robot and map the
environment in 2D using various pose hypotheses [5], [6].
Because the initial pose of the robot in the map is known,
e.g., Grisetti et al. [6] require only 60 particles to track a
robot’s position.

These approaches concentrate on the localization of robots
in 2D maps of planar environments. For many applications
like UAVs in GPS-denied places, localization with six degrees
of freedom (DoF) is desirable. Perez-Grau et al., for instance,
extended MCL to track the position of a flying robot [7]. They
used landmarks for pose tracking, but did not consider the
global localization problem. Even in this simplified scenario,
they already required 300 particles. The global localization
problem in 3D is addressed in works by Oishi et al. and
Hornung et al. [8], [9]. Their method is not real-time capable
and requires between 20,000 and 72,000 particles to localize
a robot in a 3D map, which is ten times more compared to
the 2D case. Kümmerle et al. also presented an approach for
MCL in 3D to localize a robot in an outdoor environment [10].
They stated that in their scenario at least 100,000 particles
are required to achieve basic localization. All these papers
demonstrate the high computational demands of the problem
and state that, in comparison with the 2D case, significantly
more particles are required.

Due to the parallel nature of the particle filter, in recent
years parallel hardware architectures have been used to speed
up computations. Existing methods using such hardware only
consider local tracking and can be divided into GPU-based
and FPGA-based approaches. Examples for GPU-accelerated
algorithms are [11]–[14]. In the experiments presented in
these works, a fixed number of up to 1,000 particles has been
considered, far less than required for realistic applications.
Related methods using FPGAs are presented in [15]–[18].
They consider the general algorithm of the particle filter to
solve the bearing-only tracking problem, which is not as
complex as 6D MCL. Other existing works like [19], [20]
use particle filters to track objects in camera images. Such
tracking problems are less complex than global localization,
hence tracking is possible with only 300 particles.

Based on this review of existing literature, it can be
concluded that global MCL in 6D is still unsolved for realistic
applications. We estimate, that at least 100,000 particles
have to be considered when solving the problem for a
realistic indoor environment. Since mobile robots usually
have a limited power budget, solutions have to be found that

allow to simulate such high numbers with minimal energy
consumption.

In the case of particle filters applied to the problem of robot
localization, GPUs have already achieved a high acceleration
of the algorithm and are highly promising to get a significant
step closer to the global localization in 6 DoF, where FPGA-
based implementations have mostly dealt with less complex
scenarios and are yet not as high investigated for this kind
of problem as the GPU.

In this work, we provide an implementation for embedded
GPU-based architectures to accelerate MCL in 3D TSDF
maps to investigate the potential of developing a mobile robot
system with 6 DoF. We provide details on the implementation,
including mechanics to ensure efficient memory access, which
proves to be important to avoid bottlenecks in the parallel
computation. In the evaluation, we present a use-case, where
a mobile robot is localized in a simulated office environment
and also analyze the architecture using an established real-
world benchmark dataset. We show, that our implementation
is able to solve the global localization problem significantly
faster while reducing the power consumption clearly com-
pared to standard CPU-based hardware.

III. ALGORITHM

As our algorithm is similar to standard MCL [3], this
section only briefly summarizes that approach, concentrating
on the special properties of TSDF maps. They show several
properties that are beneficial for our purposes. First, the
map can be efficiently represented in a sparse 3D array.
Second, although the representation itself is discrete, for each
possible pose, a pseudo-continuous state can be estimated
via interpolation. Secondly, for each hypothesis and a given
scan, only a simple lookup is required to obtain the closest
distance to the map, which immediately results in an update
of the sensor. Considering these properties, the transfer from
standard MCL to 6D MCL is straight forward, although
computationally demanding.

To support fast evaluation of the sensor model, a TSDF
map is used. Similar to Akai et al. [21], it is split up into

Fig. 2: Example of the simulation environment (left) with the
robot model and the resulting TSDF volume (right). Red cells
represent positive values and green cells represent negative
values. Darker cells are closer to the surface. Cells exceeding
the truncation distance are not rendered.

a fine and a coarse-grained representation to save memory
while allowing fast access. The map only holds parts in
the coarse grid, which contain distance values within the
truncation distance. For all other grid cells, the values are
clamped to the truncation value and can be neglected. Hence,
the presented method scales well to larger environments. An
example of such a map is shown Fig. 2.

In the first step of the algorithm, the particle set is initialized
based on the given initial distribution of the robot’s state.
Each particle is represented as described in Eq. 1 and Eq. 2.
It holds the robot state st in 6D (position and rotation) and
a weight wt.

p
[n]
t = (s

[n]
t , w

[n]
t) (1)

s
[n]
t = (x

[n]
t , y

[n]
t , z

[n]
t , φ

[n]
t , ψ

[n]
t , θ

[n]
t) (2)

If a pose estimation is available, the particles are distributed
with predefined variance around the initial state estimation.
Without an initial pose estimate, the particles are distributed
uniformly in free space. After initialization, three steps of
the algorithm are repeated to iteratively improve the pose
estimation of the robot. The first step is the motion update
that applies the motion model to each particle.

After the propagation of the robot’s state, the sensor
update is computed, where the likelihood for every particle is
calculated using the sensor model of the robot. In this step,
a virtual sensor measurement for every particle is generated
and compared to the map. The weight of a particle increases
with the match of the observation to the environment. In this
work, the endpoint model is used to estimate the weights,
where the distance of the scan points to the surface of the
environment is used as measure of the match. Because of the
structure of the TSDF representation, this can be calculated
directly using Eq. 3. The weight for every particle depends
on the considered pose xt in the map m. m(xt, zt) represents
the signed distance of the considered scan point zt from the
perspective of the particle to the next obstacle in the map,
which can be obtained directly by a look-up in the TSDF
volume. All entries of the map can be calculated before the
start of the scan procedure, where the inefficient calculation of
the exponential function can be prevented. However, using a
laser scanner the sensor update is still computation expensive,
because a high number of scan points must be evaluated for
every single particle.

phit(zt|x[n]t ,m) ≈ 1√
2 · π · σ2

exp (−1

2
· m(x

[n]
t , zt)

2

σ2
) (3)

The pose can then be estimated by the weighting average of
the particles or by using the particle with the highest weight
as the current pose of the robot. The last step is to draw a
new set of particles. This is done using the state distribution
represented by the current particle set. Based on the calculated
weights, a new set of particles is chosen from the previous
one in the resampling step. Of all the steps of the algorithm,
the sensor update is by far the most computationally intensive
and its acceleration is therefore the focus of this work.

embedded-CPU GPU

Motion Update

Resampling
Particle

Map
Sensor Update

Interface

DRAM

Sensor Update
Acceleration

MCLLiDAR

Odometry

IMU

Sensors

Drivers

Preprocessing Scan
Points

Platform

Communication

Host-System

Fig. 3: Visualization of the system architecture for the GPU.

IV. SYSTEM ARCHITECTURE

In this section we describe the basic system architecture for
the CPU and GPU implementation of the algorithm, where the
CPU-based implementation serves as the baseline to evaluate
the acceleration based on the embedded GPU. To ensure
comparability, all systems have the same structure and are
able to receive and send data via the same interface, which
allows to evaluate them on the same datasets. Moreover,
the GPU-based implementation can be considered as an
extension of the CPU-based implementation. An overview
of the system architecture is shown in Fig. 3. In both
cases embedded platforms with CPU and GPU are used.
As described in Seq. III, the sensor update is the most
computationally expensive part of the algorithm. Therefore,
this step is executed on the acceleration hardware, while the
motion update and the resampling remain on the embedded
CPU. The systems are able to operate without the need for
an external computer, but can also communicate with a host
using ROS to receive sensor data, visualize the results or
replay pre-recorded data via bag files. Odometry estimation
for the motion model update is provided by dead reckoning
or IMU. 3D point clouds are received from a laser scanner
to evaluate the current particles in the TSDF map. On GPU-
based platforms, an interface process is running on the CPU
to handle the access to the GPU.

V. IMPLEMENTATION

The provided implementations to accelerate the evaluation
of the particles on all hardware platforms are detailed in this
section. The main algorithm of the sensor update consists
of two consecutive steps. First, the sampled poses p[n]t must
be evaluated to compute the weights w[n]

t of the particles.
Afterwards, the weights are used to determine the weighted
sum of the considered poses to get a pose estimation of the
robot system. These steps have to be implemented differently
with respect to the underlying hardware architecture.

A. CPU Implementation

For comparability in terms of power consumption and
performance, all available threads of the CPU-based system
have to be used to achieve the maximum utilization of the

Thread 1

For partikel 1 to n/4

Calculate particle
transform

For all scan points

Evaluate sensor model

Thread 2

For partikel n/4 to n/2

Calculate particle
transform

For all scan points

Evaluate sensor model

Thread 3

For partikel n/2 to 3n/4

Calculate particle
transform

For all scan points

Evaluate sensor model

Thread 4

for partikel 3n/4 to n

Calculate particle
transform

For all scan points

Evaluate sensor model

Calculate sum of
weights

Thread 1 Thread 2 Thread 3 Thread 4

Calculate pose of
particel 1 to n/4

Calculate pose of
particle n/4 to n/2

Calculate pose of
particle n/2 to 3n/4

Calculate pose of
particle 3n/4 to n

Summarize partial poses to
get the pose estiamtion

End

Start

Fig. 4: Program flow of the CPU-based implementation with
four available threads. The particles are split up into groups
according to the number of available threads.

hardware. The program flow of the implementation is shown
in Fig. 4. The particles are split up into groups according
to the number of available threads in the system. Every
group of particles is processed in parallel by an assigned
single thread. After evaluation of all particles, the threads are
synchronized to sum up the particle weights, which is required
for normalization. The calculation of the pose estimation is
also split up into the available threads similar to the evaluation
procedure.

B. GPU Implementation

For maximum throughput on GPUs, many independent
threads have to be scheduled to hide latency inside the system.
The idea is to adapt the CPU-based implementation from
the previous section by processing every particle in a single
GPU thread. This is visualized in Fig. 5. Despite the property,
that all particles can be evaluated independently, one major
bottleneck to be dealt with is the high amount of memory
access on the particles, scan points and map data. Although the
map access is highly unstructured and strongly depends on the
distribution of the particle cloud, the access to the particles and
scan points in the algorithm is structured. Hence, the memory
efficiency can be optimized by ordering the data according
to the threads in the multiprocessors, as visualized in Fig. 6.
Although this leads to higher parallelism, it also increases
the synchronization overhead for computing the particle
weights and the pose. This is handled by implementing a
GPU-based reduction pattern, which exploits the memory
hierarchy of the GPU. Depending on the number of used
particles in MCL, the reduction kernel needs to be called
several times to achieve synchronization of all threads. This
is because of the processing structure in the GPU, which

Thread 1

Transformation

Für alle
Scanpunkte

Evaluation

Thread 2 Thread n-1

End

Start

Transformation

Für alle
Scanpunkte

Evaluation

Transform

For all scan points

Evaluate

...

Summarize weight sums

Weighted sum of particle poses

Thread n

Transform

For all scan points

Evaluate

Thread 2

Transform

For all scan points

Evaluate

Thread 1

Transform

For all scan points

Evaluate

Fig. 5: Program flow of the GPU-based implementation. Each
particle is processed by single thread.

x x x x x x y y y y y y ...

T1 T2 T3 T4 T5 T6

Fig. 6: Visualization of the access pattern for the particles and
the scan points per thread on the GPU. Every letter stands
for one coordinate of the particles or the scan point.

T1 T2 T3 T4

T1 T2

T1

Fig. 7: Simplified example of the reduction pattern used to
merge the partial results on the GPU. Each thread summarizes
two data in every iteration until only one final data point is
left. The gray fields mark data points no longer considered
by the algorithm.

allows synchronization between threads only within a thread
block of limited size. So every iteration of the reduction
pattern summarizes the thread blocks hierarchically to exploit
parallelism, as shown in Fig. 7. In every iteration, each thread
sums up two data points. Thus, in every iteration the number
of data points and active threads is halved until the final result
is reached. Similar to the particle ordering, the threads access
and store data in the same order as they are executed on the
multiprocessors of the GPU, resulting in a better utilization
of the memory bandwidth.

VI. EVALUATION

To evaluate the implementations for the CPU and the GPU
we used pre-recorded datasets. First, we used an office floor,
shown in Fig. 8, to test our implementation in a common
GPS-free indoor environment. It covers an area of 50m×20m.
In addition, a robot equipped with a virtual Velodyne VLP-
16 LiDAR was simulated in this environment using Gazebo.
In the original Gazebo environment a safely driving robots
moves on the xy-plane only. To demonstrate the localization
of a robot moving in 6D state space, we placed ramps into the
map as shown in the left part of Fig. 8. Using a simulation
environment lets us investigate an arbitrary number of motion
trajectories within the same map where each motion trajectory
is provided with a ground truth localization.

Second, we used datasets of the HILTI SLAM Challenge
[22] to especially evaluate the GPU-based implementation to
its capability to globally localize a robot in real-world indoor
scenarios. We focused on the ”Drone-Testing arena” sequence
because it contains sensor data acquired from an Ouster OS0-
64 and, most importantly, provides a 6-DoF trajectory of the
sensor as ground truth. We first use the ground truth as a
perfect odometry estimation for the motion update to avoid
false odometry estimations affecting the global localization.
From there on, we could systematically increase the level of
applied noise which allows us to make accurate predictions
about how much odometry estimation error is allowed in order
for our system to still produce reliable global localization
results.

For both the simulated and the real-world experiments we
generated the required TSDF maps using HATSDF-SLAM
[23]. Then, the sensor data and the respective TSDF map is
passed into our software via the provided ROS interface to
ensure comparability. During the following experiments we
tested our implementation for a large number of trajectories,
observing whether and how the algorithm converges, and
additionally measuring the localization accuracy, performance,
and power consumption. To ensure the generalization of our
implementation, the evaluation experiments use trajectories
different then those used to create the map.

A. Qualitative Evaluation

First, we test our implementation in the simulated office
environment. Fig. 1 shows an example experiment. Initially,
the particles were uniformly sampled from the free space and
with six degrees of freedom. After a few iterations of MCL,
the particles are distributed around several probable poses,

reflecting symmetries and the similarities of the rooms. Finally,
the particle distribution converges around the correct pose of
the robot. White dots (best seen in the PDF file) visualize
the transformed point cloud of the laser scanner, which, once
it matches the map, indicates successful localization. The
reconstructed trajectory in this scenario overlaps with the
ground truth, as visualized in Fig. 8 (middle). For this run,
the translation errors for every axis is plotted in Fig. 10.
Repeating the experiment for 11 different trajectories shows
that approximately 50,000 particles are needed to achieve
robust localization of the robot in this particular environment.
Furthermore, both the CPU and GPU implementation achieves
a localization accuracy in all simulation experiments within
the order of magnitude of the fine map resolution (about
6 cm).

Besides the simulated scenarios, we also evaluated the
quality of the global localization in a real-world environment
of the HILTI datasets. Similar to the simulated environment,
the particles are initially distributed uniformly in the complete
free space of the environment. For the Drone-Testing arena,
the distribution of the particles for different iterations can
be seen in Fig. 9. Similar to the simulated scenario, several
particle clusters are formed at the beginning, but converge
against the true pose of the robot. We found that increasing the
noise of both the velocity and angular velocity components
of the motion estimate to σ = 0.1 does not significantly
affect the convergence speed. When setting the noise σ to
0.1, 100,000 particles are needed to achieve a reliable global
localization in this scenario. The convergence of the estimated
pose can also be seen in Fig. 11, where the translation error
for every axis is plotted for the Drone-Testing arena sequence.
The results show that the localization error increases at the
beginning. This is because of the multiple particle clusters,
which lead to a wrong average pose estimation. Then, the
pose error decreases significantly as the individual clusters
disappear. Overall, the results on the HILTI datasets show
that our software is able to perform global localization even
in real-world, feature-less environments that contain many
symmetries, while moving freely in 6DoF space.

B. Performance

In case of the simulated robot, the laser scanner can provide
point clouds with a frequency of 20 Hz. Therefore, the
implementations have to compute an iteration of the sensor
update in less than 50 ms to achieve real-time performance,
while the Ouster laser scanner provides scan points with
10 Hz. Hence, the sensor update must be computed within
less than 100 ms to achieve real-time performance in the
HILTI datasets. To evaluate the performance, an Intel NUC
(NUC6i7KYK, Core i7-6770HQ) served as CPU baseline.
For the GPU implementation, we used a Jetson AGX Xavier
and a Jetson AGX Orin to accelerate the algorithm and to
show the scalability of the implementation. To compare the
performance of the implementations, the run time of the
sensor update was measured for normally distributed particle
clouds with an increasing number of particles. The measured
run times are shown in Fig. 12. As expected, the run time

Fig. 8: Top down view of the simulation environment (left), the corresponding TSDF map (middle) and the ramp scenario (right).
The traveled path of the robot is marked blue.

Fig. 9: Top down view of the particles during the initialization (left), after several updates (middle) and near conversion to
the real pose (right) while processing HILTI’s Drone-Test arena dataset.

 0

 2

 4

 6

 8

 10

 12

 14

 0 10 20 30 40 50

E
rr

o
r

(m
)

Iteration

Translation Error X-Axis
Translation Error y-Axis
Translation Error z-Axis

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 50 100 150 200 250 300

E
rr

o
r

(m
)

Iteration

Translation Error X-Axis
Translation Error y-Axis
Translation Error z-Axis

Fig. 10: Translation error for every axis during global pose estimation (left) and the following pose tracking (right) of the
using the simulation dataset.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 20 40 60 80 100 120 140

E
rr

o
r

(m
)

Iteration

Translation Error X-Axis
Translation Error y-Axis
Translation Error z-Axis

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 150 200 250 300 350 400 450 500 550

E
rr

o
r

(m
)

Iteration

Translation Error X-Axis
Translation Error y-Axis
Translation Error z-Axis

Fig. 11: Translation error for every axis during global pose estimation (left) and the following pose tracking (right) using
HILTI’s Drone-Test arena dataset.

 0

 500

 1000

 1500

 2000

 2500

 0 20000 40000 60000 80000 100000

R
u
n
ti

m
e
 (

in
 m

s)

Number of Particles

NUC
Xavier

Orin

Fig. 12: Comparison of the measured run times with an
increasing number of particles during a normal distribution.

TABLE I: Performance and power consumption of the
implementations on the CPU (NUC) and GPU (AGX Xavier
and Orin) in the simulated environment.

NUC AGX Xavier AGX Orin

Run time [ms] 1527 155 51
Power [W] 72.2 34.64 41.2
Energy [J/Particle Cloud] 110.25 5.37 2.1

of all implementations scales linearly with the number of
particles.

In addition, the run times of all implementations were
measured during the localization on the traveled path in the
simulated environment. Tab. I shows that although the goal
of being faster than the maximum scanning frequency of 20
Hz was not achieved, both accelerations based on the GPU
are able to speed up the sensor update significantly.

C. CUDA Metrics of the GPU-based Implementation

The GPU-based implementation has been developed using
CUDA. So various metrics can be achieved to analyze the
efficiency of the implementation on the hardware. They are
estimated using a prerecorded normal distributed particle
cloud with the tool nvprof. The most important metrices for
the particle cloud are depicted in Tab. II. As can be seen,
the implementation achieves a high occupancy of the GPU.
The remaining resources of the GPU cannot be occupied,
which occurs because of the look-ups in TSDF map. The
random look-up of a TSDF value can lead to one or two
memory accesses to the DRAM, depending on the occupancy
of the requested grid cells. So that threads finish their work
at different times, leading to inactive resources.

The random distribution of the particles in the environment
of the robot has also an impact on the performance and
efficiency of the memory access. The look-up of the TSDF
values reduces the cache hits significantly. Although some
look-ups share the same coarse grid, the most memory access
for the transformed scan points are widely distributed in the
environment resulting only in a few shared memory access
on the fine map between the scan points. The widely and

TABLE II: Considered CUDA metrics for the GPU-based
implementation for evaluating a locally initialized cloud of
50,000 particles.

Metric Value

Achieved Occupancy 74,163 %
L1/TEX Cache Hits 39,64 %
L2 Cache Hits (read) 39,63 %
Global Memory Efficiency (read) 46,43 %
Global Memory Efficiency (write) 100,00 %

randomly distributed particles also lead to unaligned memory
access in the TSDF map between neighboring threads. This
reduces the efficiency of the read accesses, because only a few
parts of the read data blocks read from DRAM can be used.
Furthermore, the cache hits decreases as the particle cloud
is distributed more widely in the environment. When the
particles are initialized globally the L1 cache hits decreases
to 31.53 % and the L2 cache hits achieved a value of 11.47 %
However, the writing accesses into DRAM can be performed
with the maximum efficiency, because all threads write the
weights of the particles aligned back into the global memory.
All in all it can be concluded, that the memory accesses to
look up the TSDF value in the map of the environment are
the major bottleneck for the implementation on the GPU,
because the underlying hardware architecture does not fit the
kind of reading accesses.

D. Energy Efficiency

For localization on a mobile system, power consumption
is a crucial factor. We measured the power consumption
via a shunt directly on the boards. The results are shown in
Tab. I. With the GPU implementations, a significant reduction
in both power and energy has been achieved. Using our
implementation on the AGX Orin resulted in a more than 50
times decrease in Energy per Particle Cloud compared to the
CPU implementation.

VII. CONCLUSION AND FUTURE WORK

Because of the significant acceleration and the high energy
efficiency the GPU implementation compared to the CPU-
based baseline, a decisive step has been made in the direction
of a real-time capable global MCL for mobile robots. Our
GPU implementation outperforms a CPU implementation by
factor of 30, while increasing the energy efficiency signifi-
cantly by a factor of more than 50. The next step to improve
performance and energy efficiency is to build heterogeneous
architectures to extend the GPU-based architecture with
specialized units to process particles. Furthermore, to evaluate
the quality of the invented algorithms in realistic scenarios,
new benchmark datasets are required that allow to evaluate
many trajectories in challenging environments. To tackle this
problem, we plan to provide a repository of reference TSDF
maps with many different trajectories captured with a laser
tracking system to provide a benchmarking environment for
the development of such algorithms similar to the established
KITTY [24] and Hilti [25] datasets for SLAM.

REFERENCES

[1] M. Eisoldt, J. Gaal, T. Wiemann, M. Flottmann, M. Rothmann,
M. Tassemeier, and M. Porrmann, “A fully integrated system for
hardware-accelerated tsdf slam with lidar sensors (hatsdf slam),”
Robotics and Autonomous Systems, vol. 156, p. 104205, 2022.

[2] S. Rahn, P. Gehricke, C.-L. Petermöller, E. Neumann, P. Schlinge,
L. Rabius, H. Termühlen, C. Sieh, M. Tassemeier, T. Wiemann et al.,
“Redrose—reconfigurable drone setup for resource-efficient slam,” in
Proceedings of the DroneSE and RAPIDO: System Engineering for
constrained embedded systems, 2023, pp. 20–30.

[3] D. Fox, W. Burgard, F. Dellaert, and S. Thrun, “Monte Carlo Local-
ization: Efficient Position Estimation for Mobile Robots,” AAAI/IAAI,
vol. 1999, no. 343-349, pp. 2–2, 1999.

[4] D. Fox, “KLD-sampling: Adaptive Particle Filters and Mobile Robot
Localization,” Advances in Neural Information Processing Systems
(NIPS), vol. 14, no. 1, pp. 26–32, 2001.

[5] D. Hahnel, W. Burgard, D. Fox, and S. Thrun, “An Efficient FastSLAM
Algorithm for Generating Maps of Large-Scale Cyclic Environments
from Raw Laser Range Measurements,” in Proceedings 2003 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS
2003)(Cat. No. 03CH37453), vol. 1. IEEE, 2003, pp. 206–211.

[6] G. Grisetti, C. Stachniss, and W. Burgard, “Improved Techniques for
grid mapping with rao-blackwellized particle filters,” IEEE transactions
on Robotics, vol. 23, no. 1, pp. 34–46, 2007.

[7] F. J. Perez-Grau, F. Caballero, A. Viguria, and A. Ollero, “Multi-
sensor three-dimensional Monte Carlo localization for long-term aerial
robot navigation,” International Journal of Advanced Robotic Systems,
vol. 14, no. 5, 2017.

[8] S. Oishi, Y. Jeong, R. Kurazume, Y. Iwashita, and T. Hasegawa, “ND
voxel localization using large-scale 3D environmental map and RGB-
D camera,” in 2013 IEEE international conference on robotics and
biomimetics (ROBIO). IEEE, 2013, pp. 538–545.

[9] A. Hornung, K. M. Wurm, and M. Bennewitz, “Humanoid Robot
Localization in Complex Indoor Environments,” in 2010 IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE,
2010, pp. 1690–1695.

[10] R. Kümmerle, R. Triebel, P. Pfaff, and W. Burgard, “Monte Carlo
Localization in Outdoor Terrains using Multi-Level Surface Maps,”
Journal of Field Robotics, vol. 25, no. 6-7, pp. 346–359, 2008.

[11] M. F. Fallon, H. Johannsson, and J. J. Leonard, “Efficient scene
simulation for robust Monte Carlo localization using an RGB-D camera,”
in 2012 IEEE international conference on robotics and automation.
IEEE, 2012, pp. 1663–1670.

[12] S. Kanai, R. Hatakeyama, and H. Date, “Improvement of 3D Monte
Carlo localization using a depth camera and terrestrial laser scanner,”
The International Archives of Photogrammetry, Remote Sensing and
Spatial Information Sciences, vol. 40, no. 4, p. 61, 2015.

[13] A. Dhawale, K. S. Shankar, and N. Michael, “Fast Monte-Carlo
Localization on Aerial Vehicles using Approximate Continuous Belief
Representations,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018, pp. 5851–5859.

[14] F. A. Rahman, R. D. H. Al-Fahsia, and I. Ardiyantoa, “GPU-
Accelerated Monte Carlo Localization for Mobile Robot Soccer with
Omnidirectional Camera.”

[15] M. Bolic, P. M. Djuric, and S. Hong, “Resampling algorithms and
architectures for distributed particle filters,” IEEE Transactions on
Signal Processing, vol. 53, no. 7, pp. 2442–2450, 2005.

[16] S. Liu, G. Mingas, and C.-S. Bouganis, “Parallel Resampling for
Particle Filters on FPGAs,” in 2014 International Conference on Field-
Programmable Technology (FPT). IEEE, 2014, pp. 191–198.

[17] H. A. Abd El-Halym, I. I. Mahmoud, and S. Habib, “Proposed hardware
architectures of particle filter for object tracking,” EURASIP Journal
on Advances in Signal Processing, vol. 2012, no. 1, pp. 1–19, 2012.

[18] A. Krishna, A. van Schaik, and C. S. Thakur, “Source localization
using particle filtering on FPGA for robotic navigation with imprecise
binary measurement,” arXiv preprint arXiv:2010.11911, 2020.

[19] J. U. Cho, S. H. Jin, X. Dai Pham, J. W. Jeon, J. E. Byun, and H. Kang,
“A Real-Time Object Tracking System Using a Particle Filter,” in 2006
IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, 2006, pp. 2822–2827.

[20] S. Saha, N. K. Bambha, and S. S. Bhattacharyya, “Design and
implementation of embedded computer vision systems based on particle
filters,” Computer Vision and Image Understanding, vol. 114, no. 11,
pp. 1203–1214, 2010.

[21] N. Akai, T. Hirayama, and H. Murase, “3D Monte Carlo Localization
with Efficient Distance Field Representation for Automated Driving in
Dynamic Environments,” in 2020 IEEE Intelligent Vehicles Symposium
(IV). IEEE, 2020, pp. 1859–1866.

[22] M. Helmberger, K. Morin, B. Berner, N. Kumar, D. Wang, Y. Yue,
G. Cioffi, and D. Scaramuzza, “The Hilti SLAM Challenge Dataset,”
2021.

[23] M. Eisoldt, M. Flottmann, J. Gaal, P. Buschermöhle, S. Hinderink,
M. Hillmann, A. Nitschmann, P. Hoffmann, T. Wiemann, and M. Por-
rmann, “HATSDF SLAM–Hardware-accelerated TSDF SLAM for
Reconfigurable SoCs,” in 2021 European Conference on Mobile Robots
(ECMR). IEEE, pp. 1–7.

[24] J. Fritsch, T. Kuehnl, and A. Geiger, “A new performance measure and
evaluation benchmark for road detection algorithms,” in International
Conference on Intelligent Transportation Systems (ITSC), 2013.

[25] L. Zhang, M. Helmberger, L. F. T. Fu, D. Wisth, M. Camurri,
D. Scaramuzza, and M. Fallon, “Hilti-oxford dataset: A millimeter-
accurate benchmark for simultaneous localization and mapping,” IEEE
Robotics and Automation Letters, vol. 8, no. 1, pp. 408–415, 2022.

	Introduction
	Related Work
	Algorithm
	System Architecture
	Implementation
	CPU Implementation
	GPU Implementation

	Evaluation
	Qualitative Evaluation
	Performance
	CUDA Metrics of the GPU-based Implementation
	Energy Efficiency

	Conclusion and Future Work
	References

