
FeatSense – A Feature-based Registration Algorithm with
GPU-accelerated TSDF-Mapping Backend for NVIDIA Jetson Boards

Julian Gaal1, Thomas Wiemann2,3, Alexander Mock1, and Mario Porrmann1

Abstract— This paper presents FeatSense, a feature-based
GPU-accelerated SLAM system for high resolution LiDARs,
combined with a map generation algorithm for real-time gener-
ation of large Truncated Signed Distance Fields (TSDFs) on em-
bedded hardware. FeatSense uses LiDAR point cloud features
for odometry estimation and point cloud registration. The regis-
tered point clouds are integrated into a global Truncated Signed
Distance Field (TSDF) representation. FeatSense is intended to
run on embedded systems with integrated GPU-accelerator like
NVIDIA Jetson boards. In this paper, we present a real-time
capable TSDF-SLAM system specially tailored for close coupled
CPU/GPU systems. The implementation is evaluated in various
structured and unstructured environments and benchmarked
against existing reference datasets. The main contribution of
this paper is the ability to register up to 128 scan lines of an
Ouster OS1-128 LiDAR at 10Hz on a NVIDIA AGX Xavier
while achieving a TSDF map generation speedup by a factor
of 100 compared to previous work on the same power budget.

I. INTRODUCTION

In previous work, we presented HATSDF-SLAM [1] for
LiDAR-based SLAM that maintains a global truncated signed
distance field (TSDF) of the environment while performing lo-
calization directly within this representation. It is implemented
on a low-power embedded system with an integrated Field
Programmable Gate Array (FPGA) to achieve localization in
real time on slowly moving systems. This FPGA-based Point-
to-TSDF registration allows real-time SLAM for LiDARs with
up to 16 horizontal scan lines at moderate walking speeds
and 32 horizontal scan lines at very slow speeds. HATSDF
offers good registration performance, especially in indoor
environments, but the implementation is effectively limited
by two interconnected factors: registration run time and local
map size. The TSDF representation is stored in a local map
that is incrementally shifted after a movement threshold.
During the shift operation, newly mapped parts are written
to disk while previously mapped areas are loaded into the
local map in a very disk I/O heavy operation.

Map shift is limited by disk I/O speed, while the registration
is limited by DRAM accesses to a local segment of the map.
Increasing the FPGA’s power consumption may lead to faster
computation but makes the system less suitable for long term
mapping on devices with limited battery capacity. Also, due
to the limited number of available memory ports, scalability

1Institute of Computer Science, Osnabrück University, 49069 Osnabrück,
Germany firstname.lastname@uos.de

2Fulda University of Applied Sciences, Ap-
plied Computer Science, 36037 Fulda, Germany
thomas.wiemann@informatik.fh-fulda.de

3German Research Center for Artificial Intelligence (DFKI),
Plan-based Robot Control, 49080 Osnabrück, Germany
thomas.wiemann@dfki.de

to higher resolution is problematic, as the algorithm is highly
memory bound. On the other side, embedded systems with
GPUs like the NVIDIA Jetson boards are becoming largely
available and offer GPU-based acceleration on the device
while still keeping the power consumption low. The main
advantage of such devices is that they offer more memory and
higher bandwidths compared to a FPGA system. In this paper
we present FeatSense1, a GPU-accelerated, high-resolution
mobile mapping system for start-of-the-art LiDARs that
overcomes the bandwidth bottlenecks and speed limitations
of HATSDF SLAM. We show that our solution works well in
different environments and allows higher moving speed than
the previous system. A comparison of our approach with an
existing LOAM algorithm shows that our implementation is
able to generate competitive results in terms of accuracy, while
improving the supported scanning resolution and drastically
reducing computation time.

II. RELATED WORK

LiDAR Odometry And Mapping (LOAM) [2] uses de-
ceptively simple feature extraction, smart correspondence
matching and outlier rejection to estimate the ego-motion
of a LiDAR to build 3D point clouds. Feature points are
computed on horizontal scan lines, which requires a structured
point cloud. A structured point cloud, sometimes referred
to as ordered, allows access by row P and column R
in a P × R scan, where each horizontal scan line refers
to scan line Pk at a specific angle α from the sensor
origin. If a LiDAR does not provide a structured point
cloud, it can be sorted by the vertical angle to the emitter
to reproduce an ordered structure. The invention of the
original LOAM algorithm ushered in a wave of feature-
based SLAM algorithms for such LiDARs. A-LOAM [3]
laid the basis from many LOAM-based SLAM solutions. It
uses of the Ceres optimization library [4] to significantly
speed up the scan matching optimization. Ceres allows
automatic and numeric differentiation, is highly optimized and
offers modern multithreaded linear algebra routines, including
multiple solvers for several loss functions. The library is
explicitly designed to make it easy for users to modify the
objective function without worrying about the optimization
process itself. LEGO-LOAM [5] is a variation of LOAM,
that performs ground segmentation and feature clustering for
more accurate correspondence estimation in ground-based
robot applications. It separates the scan matching task into
two distinct problems that are solved separately in a two-step

1https://github.com/juliangaal/warpsense

Fig. 1: Edge map without integration of the depth image (left) and after filtering out edges that to not exist in both domains
(right) results in less but more stable feature points.

optimization scheme for position t and orientation θ. The
system’s pose [tz , θroll, θpitch] is obtained by matching the
surface features extracted from ground segmentation, followed
by the estimation of [tz , ty , θyaw] with detected edge features
while maintaining [tz , θroll, θpitch] as a constraint. LIO-
SAM [6] optimizes both odometry estimation by LiDAR
and IMU in a tightly coupled manner. The estimated ego-
motion from IMU pre-integration [7] serves as an initial guess
for scan matching LOAM-style edge and surface features
and deskews the point clouds, while the LiDAR odometry
estimates the bias of the IMU. It introduces the use of factor
graphs [8] for IMU pre-integration, LiDAR odometry and any
number of additional constraints, like GPS or loop closure
factors. F-LOAM [9] combines typically separate scan-to-scan
registration and scan-to-map refinement into an integrated
SLAM framework where the extracted edge and surface
features are matched to a local edge map and local surface
map separately. It additionally replaces the iterative distortion
correction of typical LOAM approaches with a faster two-
stage method. Similar to A-LOAM, it also makes use of the
Ceres library, but applies Lie group mathematics [10] to solve
the ego-motion estimation problem more efficiently. The main
limitation is that it only supports LiDAR sensors with up to
64 scan lines. All these methods are based on point clouds
but to do offer a surface representation like TSDF SLAM
does.

Many robotics applications in large-scale environments
benefit from a closed surface representation of the surround-
ings, both for navigation and localization [11]. One class of
closed surface representations are Signed Distance Functions,
an implicit surface representation where the signed distance is
the orthogonal distance of point x to the boundary of set Ω in
metric space. The function value decreases while approaching
the intersection with set Ω, where the signed distance value is
zero, while the sign determines whether x is positioned interior
or exterior of Ω. Truncated Signed Distance functions take this
concept further and set a maximum signed distance value,

clamping the magnitude of represented distance to a pre-
defined to avoid inconsistencies from overlapping gradients.
In modern SLAM approaches the kind of map representation
is often neglected in the sense that the environment is only as
a point cloud or voxel map. Even in the case of sub-sampled
point clouds, the memory requirements much larger than, e.g.,
meshes or TSDF fields.

In the context of TSDF and SLAM, KinectFusion [12]
uses RGB-D images for TSDF generation and presented
a localization system based on so-called Projective ICP,
accelerated on a GPU. Because KinectFusion was limited
to a small volume, Kintinuous [13] extended the approach
to larger environments using a swapping strategy with a
ring buffer to reduce the amount of memory allocation
operations significantly. Nießner et al. [14] presented an
efficient, alternative map representation using a spatial hashing
strategy applicable for both large and fine scale volumetric
reconstruction. These related algorithms are tailored to RGB-
D or time-of-flight cameras that are limited by range and
suffer from lighting changes in the environment. HATSDF-
SLAM [1] overcomes range and lighting-condition limitations
by adapting these ideas to LiDAR data and presented a SLAM
approach that maintains a global TSDF of the environment
and performs scan matching and localization directly within
the signed distance field. It is implemented on a system-on-
chip with a tightly integrated field programmable gate array
(FPGA) accelerator to achieve localization in real time with
a low power profile suitable for mobile systems with low
energy budget. Since this kind of hardware is difficult to
program and integrate in existing systems, the aim of this
work is to provide a real-time capable implementation for
common embedded systems with classic CPU and embedded
GPUs like NVIDIA Jetson boards.

III. FEATURE COMPUTATION

This section details the computation of feature points within
the registration front end of FeatSense. It is based on F-

Gaussian Filter

Histogram Equalization

Bilateral Filter

Sobel Filter

Intensity Image

Fig. 2: Intensity image processing pipeline (left) and example image. The top right image shows the processed images after
applying the filter chain on the original intensity image (bottom right). Especially around natural features like trees (marked
red), much edge noise is removed.

LOAM LiDAR mapping and uses an Ouster OS1-128 LiDAR
with 128 scan lines, which is up to four times the resolution
used in HATSDF SLAM. The official Ouster OS1-128 driver
publishes a structured point cloud. This allows to iterate
over points in a very cache and memory-friendly manner to
calculate the curvature c of a neighborhood Si, where point
P in line k at index i in the middle of this neighborhood, as
shown in Eq. 1.

c(k,i) = ((
∑

j∈Si,j 6=i

P(k,j))− |Si| · P(k,i))
2 (1)

This term is then summed across its dimensions (x,y,z) to
compute the final curvature estimate. This follows the idea
presented of F-LOAM, yet it is explicitly stated here as it strays
from the original LOAM [2] definition and first appeared in the
implementation of A-LOAM [3]. After curvature calculation,
feature selection follows an approach more closely in line
with LOAM or LIO-SAM. The points in each subregion are
sorted by curvature and determined to be an edge feature,
if the points exceed a threshold. To reduce the influence of
potentially incorrect correspondences further, unreliable edges
found in natural objects [15] are discarded when exceeding
a maximum edge threshold. Points are classified as a surface
feature if they fall below a threshold and the number of
selected feature points in the sub-region does not exceed a
maximum. Lastly, features are filtered out under the following
conditions:

1) The number of edge and surface features exceeds the
maximum within a subregion.

2) Surrounding points were already selected. As opposed
to F-LOAM, this step ensures a uniform sampling
of the point cloud. The OS1-128 offers a uniquely
dense point cloud, so this step is crucial for odometry
estimation performance. Additional sub-sampling is
risky however, and relies on the assumption that changes
in the environment between scans stay sufficiently
small.

3) The feature point cannot be a surface point and roughly
parallel to the laser emitted from the LiDAR sensor

origin. Surfaces parallel to the emitted laser pulse
produce high noise, and edges can be mistaken for
surfaces due to LiDAR-typical jump edge noise.

4) The feature point cannot be on the boundary of an
occluded space in the point cloud, i.e., in the shade
of another object. Depending on the position of the
sensor, the previously occluded region in frame n can
become visible in frame n+1 which can lead to wrong
correspondences.

Modern LiDAR sensors include additional channels besides
depth information, e.g., reflectivity, intensity or time stamps.
Intensity is the measured return signal strength of a laser
beam in a given direction. The value can vary depending on
the surface properties of the object reflecting the laser beam,
scan angle, distance, texture, and humidity. In practice, this
intensity value is often used to filter unreliable points in laser
scans, as low intensity generally correlates with an imprecise
measurement. The original F-LOAM algorithm does not take
this information into account. In sparse regions, points are
often mislabelled easily, and in more natural environments,
edges may be significantly overrepresented. A scan of a
tree, for example, has many sharp features, but depending
on weather, wind or reflectivity, these types of edges are
unreliable.

In FeatSense we use point density to obtain a second
estimate for point cloud roughness to aid the determination
of edge features. For that, we combine the edge information
obtained from an intensity image and the edge information
from a LiDAR frame as computed by the LOAM algorithm.
The aim is to compute fewer but more stable edge features for
motion estimation. Only when both intensity image processing
and LiDAR processing classify an edge or surface point they
are added to the feature map.

First, a Gaussian filter is applied to reduce noise. As in
any image, the reported intensity levels are not guaranteed
to occupy the entire numerical range. This results in loss
of contrast which can hide details in darker image regions.
Hence, we use histogram normalization to normalize the
intensity image.

ps

pg

pe
~ns

pea

peb

Fig. 3: Robust and modified surface patches (left) and
edge correspondences (right) used in our implementation
benefit from increased point cloud density. The distance
to the respective closest surface is marked green. Planes
are represented by the normal, ~ns, of the plane fitted to
surface feature neighbors (yellow), while the nearest edge is
represented by pea and peb projected along a fitted edge to
the neighboring edge features (red). The respective distances
are minimized in Eq. 2, 3 and 4

High-frequency noise has been shown to significantly
hinder scan matching convergence [15]. To compensate for
that a bilateral edge-preserving noise reducing and smoothing
filter is applied. In contrast to the Gaussian smoothing
operator, the weights used for the calculation of pixels based
on their nearby pixels depend not only on the euclidean
distance but color/gray-value intensity, which ensures edge-
reserving.

Finally, the image is converted into a binary image in
terms edge or not edge by applying a Sobel filter. The
Sobel filter approximates the gradient of the image intensity
function. After the image processing pipeline, high-frequency
noise/features like trees are efficiently filtered, and only the
silhouettes remain marked as edges, shown in Fig. 2. The
effect of this filter pipeline is shown in Fig. 1

All these steps allow parallel implementation both on
GPUs and CPUs. In FeastSense, the registration process is
deliberately running on the four cores of CPU, while the
embedded GPU is used for TSDF map generation. This way,
the resources of the Jetson system are exploited optimally
by running the feature-based frontend with relative low
bandwidth requirements on the CPU while running the more
demanding TSDF update process on the GPU.

IV. FEATURE-BASED ODOMETRY ESTIMATION

The original F-LOAM maintains an edge and surface
feature map in kd-trees for efficient search and correspondence
determination. In this section we explicitly describe our
odometry estimation based on the original implementation2,
which differs from the description in the original paper.

For every edge feature pe, the set of 5 closest neighbors
ne = {ne1 , ..., ne5} are determined by a search operation
in the edge feature kd-tree. The value of ne is demeaned,
before calculating the covariance matrix of the set and solving
for eigenvalues {λ0, λ1, λ2}. The normalized eigenvector

2https://github.com/wh200720041/floam, accessed
08/22/2023

associated with the largest eigenvalue represents the unit
vector ~ue of the global edge formed for ne. The global edge
is considered reasonably clean if the difference between
eigenvalues is large: because eigenvectors formed from
eigenvalues of a covariance matrix represent the directions
in which the data varies the most, differences in eigenvalues
determine the spread of the data in each dimension. The
smaller the spread, the bigger the difference in eigenvalues.
The distance between edge feature pe, given current transform
Tk, and the global edge eg is determined by choosing pe as
the geometric center of 2 nearby points pea and peb along
~ue.

fe(pe) =
|(Tkpe − pea)× (Tkpe − peb)|

|pea − peb |
(2)

and minimized by the Ceres optimizer.
For every surface feature ps, the set of 5 closest neighbors

ns = {ns1 , ..., ns5} is determined by searching the surface
feature kd-tree. The normalized eigenvector associated with
the smallest eigenvalue represents the normal ~ns of the
potential surface fitted to ns. The quality of this fit is
determined by calculating the orthogonal distance dns

of
neighborhood ns. If dns

falls below a threshold, the surface
and surface feature point are added to the Ceres minimization
problem. The objective minimization function for surface
features ps, given current transform Tk, surface normal ~us at
position pg , minimizes the surface distance

fs(ps) = (Tkpe − pg) · ~ns (3)

After finding valid correspondences for both edge and surface
features, Ceres performs the optimization by minimizing the
sum of weighted objective functions.

min
T

∑
w(pe)fe(pe) +

∑
w(ps)fs(ps) (4)

where w(pe) and w(ps) are the edge and surface features
weighted by local sharpness and smoothness, respectively.
The optimizer is aided by an initial estimate of the pose
change since the last odometry update, in this case a simple
linear motion prediction. The odometry estimate is updated
with the new transform.

V. MAP REFINEMENT
To further improve map quality, a post-registration step is

applied. For that, we implemented a VICP-based optimization
step, that is applied when the local map is shifted. VGICP [16]
extends generalized iterative closest point (GICP) with vox-
elization to avoid costly nearest neighbor search. VGICP
calculates voxel distributions from point positions instead of
normals by aggregating the distribution of each point in the
voxel. This approach allows efficient optimization in parallel.
The authors report that the accuracy of the proposed algorithm
is closely comparable to GICP, while their implementation
is GPU-accelerated and outperforms GICP significantly in
terms of run time.

Although VGICP is significantly faster than GICP, it is
not yet capable of running in realtime. Hence we trigger this

process only periodically. The FeatSense odometry estimation
provides an initial incremental estimate of travelled trajectory
since the last optimization. Using the incremental – not the
global state estimation – is important, since map update has
to be independent of potential drift. With this incremental
state update, a GPU-accelerated VGICP implementation post-
registers the current scan with the last n registered scans in the
current map, where n is the number of scans taken since the
last post-processing. This post-registration results in a more
consistent local map that is added to the TSDF map in the
GPU mapping backend detailed in Sec. VI. After the system
has moved a configurable distance (typically 5 m), the VGICP
post-registration step is triggered if real-time requirements
allow so. An impression of the effect of this step is presented
in Fig. 4. Using this periodic post-processing, the drift can
be reduced significantly, noticeable by the thinner walls.

VI. TSDF MAP GENERATION

This section presents the concepts and implementation
of GPU-accelerated TSDF mapping in FeatSense. In our
representation, each voxel in the local map consists of a
value-weight pair. While the value denotes the distance to the
nearest surface, the weight expresses the confidence in this
value. Because of the nature of a Truncated Signed Distance
Function, the value representing the distance to the surface
is finite and can be easily fitted into 16 bits. The same is
true for the weight, which makes it possible to reduce each
voxel’s memory footprint from 32 to 16 bit.

The value-weight-pairs of the local map are filled while
traversing a ray from position p to scan point x. While a grid
cell can intersect with multiple rays, each generated TSDF
Volume V chooses the smallest distance of all rays for each
voxel v. The continuous mapping process, the TSDF update,
then consists of averaging multiple generated TSDF volumes
V0...Vn from positions p0...pn into a consistent TSDF global
volume G consisting of voxels g0...gn. A single voxel gi is
updated according to the following update rule:

gi.value =
gi.value ∗ gi.weight + vi.value ∗ vi.weight

gi.weight + vi.weight
(5)

gi.weight = min(weightmax, gi.weight + vi.weight) (6)

The value of weightmax ensures that later changes to the
TSDF volume G during the mapping process can have
an effect on the TSDF volume. This becomes especially
important in large datasets, where the TSDF volume can be
written to from multiple scan positions in the process.

Because many modern LiDAR systems scan with a rotating
LiDAR sensor with n divergent horizontal scan lines, the
generated TSDF volume may not be fully closed. Furthermore,
with increasing distance of a point from the sensor origin,
the gap to the closest horizontal scan line increases. Vertical
TSDF interpolation between scan lines is implemented by
calculating a sharp, elongated triangle-shaped area around the
ray to scan point p, in which the voxels where filled with the
current TSDF value during ray marching. To achieve this,
first an interpolation vector ~int is calculated from a vector

orthogonal to the scan lines, ~up, and the direction vector
between scanning pose s and scan point p, ~d.

~int = ~d× (~d× ~up) (7)

For each step s in ray marching, with distance l to the sensor,
the height h of the area that needs to be filled above and
below the ray in direction ~int and - ~int is calculated. This is
dependent of the vertical field of view vfov and number of
horizontal scan lines hlines of the used LiDAR sensor.

deltaz = tan(rad(
vfov

hlines
)) (8)

hs = deltaz · len (9)

From here, all voxels vi along the interpolation vector scaled
to hs are filled the current TSDF value. The TSDF update
process is illustrated in Fig. 2.

Because of the 3D discretization of space needed for a
TSDF volume, multiple projective rays can calculate values
for the same voxel. The underlying data structure must
therefore be accessed in a thread-safe manner. Because CUDA
launches hundreds or thousands of threads with each kernel
invocation, the CUDA run time provides a mechanism for
safe, concurrent access: “Compare and Swap”, implemented
in the atomicCAS function. Compare and swap guarantees
atomic access to a specific global or shared memory address.
The atomicCAS function is defined as follows:

uint64 atomicCAS(T *data, T oldval, T newval)

1) If “*data” is equal to “oldval”, replace it with “newval”
2) Always returns original value of “*data”

With this concept in place, the central challenge of finding
the smallest TSDF for each voxel can be solved by implement-
ing a minimum assigning function based on atomicCAS.
Each thread copies the current value in memory to a local
variable, assumed, and atomicCAS returns the value in
memory before swapping, old. Next, each thread compares
assumed and old.

1) if assumed and old, returned by atomicCAS, do not
match, another thread has already written to memory
and the thread needs to continue trying to write its
potentially smallest TSDF value to memory in a loop.

2) Each thread can break out of this loop and exit the
function

a) if the current thread has already written to memory
and therefore no swap occurs

b) if the potential new minimum TSDF value of the
thread is larger than the existing value old.

With thread-safe access guaranteed by the atomicCAS
directive, a continuous TSDF map can be implemented. To
do this, two CUDA kernels have been developed: one that is
responsible for generating the TSDF surface for an individual
scan, min-tsdf and another that averages the just calculated
TSDF surface according to the rules presented in Eq. 5 and 6.

Fig. 4: Points of a scanned environment with feature-based matching only (left) and periodic post-processing with VGICP
(right). The estimated trajectory is rendered in green.

~u
~int

~d× ~u

x

~d

Fig. 5: A schematic to aid the understanding of Eq. 8. It
presents the vectors that form the interpolation triangle,
surrounded by gray lines, whose corresponding TSDF values
are defined by Eq. 5 and 6

VII. EVALUATION

In our evaluation, we benchmark the performance and
accuracy of our work on publicly available reference datasets
from the HILTI SLAM Challenge [17] as well as on new
datasets we previously recorded in different environments.
We tested our algorithms on different hardware (Intel PC,
RTX 2080 graphics card and NVIDIA Jetson AGX Xavier
board). Because the public HILTI dataset does not feature
point clouds with more than 64 scan lines, we additionally
recorded two new datasets with an Ouster OS1-128, which
doubles the vertical resolution 3. The new datasets are shown
in Fig. 6. The UOS Lab dataset on the left covers an area
of approximately 20m× 20m, the larger parking lot area is
30m× 90m.

A. Trajectory Precision

To evaluate the accuracy and performance of FeatSense
we use the original implementation of F-LOAM as base line.
FeatSense extracts less and more valuable features from each

3Datasets available here: http://kos.informatik.
uni-osnabrueck.de/3Dscans/

scan while increasing the number of Ceres optimization steps.
Therefore, to make it a fair comparison, three configurations
will be compared, each: FeatSense and F-LOAM with different
number optimization steps (2 and 5).

For precision analysis, we used data from the HILTI SLAM
Challenge [17], since the setup is similar to ours. It is recorded
in varying, challenging environments with different sensors
with the intention of providing data that is considered hard,
e.g., containing movements with fast rotation changes or scans
in environments with few features or high degree of similarity.
In this evaluation, only the attached LiDAR sensor, the Ouster
OS0-64, is considered. Data is recorded with 10 Hz, vertical
resolution of 64 scan lines and 2048 lines per scan line across
a vertical field of view of 90◦. The first dataset (Drone) was
recorded in a large drone testing area with large rotation and
speed changes. The second (Basement 4) was recorded in a
small, confined basement. It features moderate rotation and
speed changes and some ground truth markers along long
corridors. The third (Campus 2) is challenging, as it features
unstructured environments with large open spaces and few
features towards the end of the recording. The results for
established error metrics (RMSE error, mean error, standard
deviation, min and max error) are summarized in Tab. I and
Fig. 7.

Except for the Basement 4 dataset, FeatSense outperforms
F-LOAM in terms of accuracy with respect to the ground
truth trajectory provided by the HILTI datasets. It has to be
noted that in datasets tracked with prism total station tracker,
a large drift using benchmarking tools is observed at the
very end and start of the trajectory plots. However, the map
is consistent at both start and end position in all datasets
with prism ground truth, and neither F-LOAM nor FeatSense
have problems with registration at these positions. This may
explain the measured weakness in the Basement 4 dataset, but
investigation is needed to determine weather this is a problem

Fig. 6: Renderings of the UOS Lab (left) and the Parking Lot datasets (right).

Fig. 7: Comparison of the computed trajectories on the Drone (left), Basement 4 (middle) and Campus 2 (right) datasets.

TABLE I: Trajectory errors on different HILTI benchmark
datasets.

Dataset Method rmse mean std min max

Drone FeatSense 0.19 0.17 0.09 0.01 0.39
F-LOAM 5 1.07 0.92 0.55 0.12 2.64
F-LOAM 2 4.25 3.68 2.12 0.52 8.22

Basement 4 FeatSense 0.23 0.21 0.10 0.06 0.45
F-LOAM 5 0.15 0.14 0.06 0.05 0.28
F-LOAM 2 0.15 0.13 0.07 0.04 0.31

Campus 2 FeatSense 0.28 0.24 0.15 0.05 0.58
F-LOAM 5 0.35 0.30 0.19 0.04 0.73
F-LOAM 2 5.73 4.80 3.13 0.47 9.49

TABLE II: Registration run times in ms at full resolution on
a PC and the ARM CPU of the Jetson board.

UOS Lab UOS Parking Lot
Intel / ARM Intel / ARM

Pre-proc. F-LOAM 8 / 26 18 / 61
FeatSense 6 / 10 8 / 17

Registration F-LOAM 15 / 32 79 / 197
FeatSense 7/ 16 34 / 76

Total F-LOAM 23 / 58 97 / 257
FeatSense 13 / 26 42 / 93

with the benchmarking or a problem case for FeatSense. The
overall evaluation on all datasets indicates that FeatSense
delivers accurate trajectories.

B. Registration and Preprocessing Benchmarks

FeatSense’s run time was evaluated using an Ouster OS1-
128 running at full resolution of 1024x128 at recording
speeds between 10 and 20 Hz. We measured the time for
pre-processing and registration individually to demonstrate
the benefits from the ordered structure of the incoming data
compared to F-LOAM, where re-ordering is required. On the
smaller dataset, FeatSense is twice as fast as F-LOAM, on
the larger dataset the speedup is even higher. The results also
show that our implementation is capable to integrate data at
10 Hz (the lower sensor frequency) on the Jetson board, on
the Intel computer real time integration in the 20 Hz mode is
possible.

C. TSDF Performance

To meaningfully compare against a reference imple-
mentation, we created an OpenMP-multithreaded CPU-
implementation of HATSDF-SLAM [1]. This reference was
compared to the GPU TSDF implementation on the NVIDIA
Jetson AGX Xavier in different power modes and a PC
with an NVIDIA RTX 2080 graphics card. In lower power

TABLE III: TSDF run times in ms for both UOS lab dataset
and UOS parking lot datasets with different local map sizes
with a voxel resolution of 6.4 cm.

20x20x15m, 6.4cm 40x40x15m, 6.4cm

min max avg min max avg

i7-4790K x 8 55 1018 407 1932 3214 2752
Xilinx ZU15EG 11 557 104 n.a. n.a. n.a.
RTX 2080 <1 <1 <1 <1 <1 <1
Xavier M0/MAX <1 <1 <1 <1 16 <1
Xavier M1/10W <1 14 1 <1 36 2
Xavier M2/15W <1 2 <1 <1 47 3
Xavier M3/30W <1 <1 <1 <1 24 1
Xavier M4/30W <1 1 <1 <1 35 1
Xavier M5/30W <1 <1 <1 <1 16 <1
Xavier M6/30W <1 13 <1 <1 41 1
Xavier M7/15W <1 1 <1 <1 1 <1

modes, the number of available GPU resources and CPU
clocking is limited to reduce the power consumption. To
investigate, if the current implementation can be applied
on Jetson boards with less resources, we benchmarked the
available settings provided by the Jetson SDK. Additionally,
we compared our TSDF algorithm against the original FPGA-
accelerated implementation on the Xilinx Zynq UltraScale+
ZU15EG presented in [1]. The voxel size of the TSDF grid
was set to 6.4 cm, which provides a good balance between
performance and map accuracy, as evaluated in previous
work [1], where we compared the meshes generated from the
TSDF representation with manually measured ground truth.
The OS1-128 sensor was again operated at full resolution. The
results are summarized in Tab. III. Note that the larger local
map used in the second experiments exceeded the available
resources on the FPGA-board.

The results show that the GPU implementation outperforms
the original implementation typically by two orders of
magnitude. It also allows using larger local maps than the
FPGA-baseline, which is desirable to reduce the I/O load
while storing the global map to the SSD hard drive. The
accuracy of the meshes extracted from the UOS lab datasets
were additionally compared to the meshes evaluated in [1].
The reported mean error in CloudCompare was close to zero,
which indicates that the resulting TSDF maps reflect the
accuracy of this previous work.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we presented FeatSense, an approach to
build LiDAR-based TSDF maps in embedded devices. In
contrast to existing methods, FeatSense uses information from
the intensity images of modern LiDARs to generate more
stable features for scan matching. A simple yet effective
image processing pipeline filters out instable features and
reduces the number of features needed to solve the registration
problem, which in turn decreases computation time. FeatSense
outperforms F-LOAM in terms of processing speed and
accuracy. The presented results show, that this approach allows
processing of high-resolution point clouds from an Ouster
OS1-128 in real time on a Jetson AGX Xavier board. The

TSDF mapping backend runs on a GPU and is able to integrate
more data faster than the previous implementation in HATSDF
SLAM and avoids the I/O bottleneck by supporting larger
local maps. In future work, we plan to port the TSDF-based
registration used in HATSDF SLAM to GPUs to also the
computed TSDF map directly for scan registration.

ACKNOWLEDGMENT

The DFKI Niedersachsen (DFKI NI) is sponsored by the
Ministry of Science and Culture of Lower Saxony and the
VolkswagenStiftung

REFERENCES

[1] M. Eisoldt, J. Gaal, T. Wiemann, M. Flottmann, M. Rothmann,
M. Tassemeier, and M. Porrmann, “A fully integrated system for
hardware-accelerated tsdf slam with lidar sensors (hatsdf slam),”
Robotics and Autonomous Systems, vol. 156, p. 104205, 2022.

[2] J. Zhang and S. Singh, “Loam : Lidar odometry and mapping in real-
time,” Robotics: Science and Systems Conference (RSS), pp. 109–111,
01 2014.

[3] H. A. R. Lab. Advanced lidar odometry and mapping (a-loam).
Accessed last 11/15/22. [Online]. Available: https://github.com/
HKUST-Aerial-Robotics/A-LOAM

[4] S. Agarwal, K. Mierle, and T. C. S. Team, “Ceres Solver,” 3 2022.
[Online]. Available: https://github.com/ceres-solver/ceres-solver

[5] T. Shan and B. Englot, “Lego-loam: Lightweight and ground-optimized
lidar odometry and mapping on variable terrain,” in 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2018, pp. 4758–4765.

[6] T. Shan, B. Englot, D. Meyers, W. Wang, C. Ratti, and D. Rus, “Lio-sam:
Tightly-coupled lidar inertial odometry via smoothing and mapping,”
in 2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2020, pp. 5135–5142.

[7] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, “Imu preinte-
gration on manifold for efficient visual-inertial maximum-a-posteriori
estimation,” in Robotics: Science and Systems, 2015.

[8] D. Koller and N. Friedman, Probabilistic graphical models: principles
and techniques. MIT press, 2009.

[9] H. Wang, C. Wang, C. Chen, and L. Xie, “F-loam : Fast lidar
odometry and mapping,” in 2021 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2020.

[10] A. Kirillov, Jr, An Introduction to Lie Groups and Lie Algebras, ser.
Cambridge Studies in Advanced Mathematics. Cambridge University
Press, 2008.

[11] S. Pütz, T. Wiemann, M. K. Piening, and J. Hertzberg, “Continuous
shortest path vector field navigation on 3d triangular meshes for mobile
robots,” in 2021 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2021, pp. 2256–2263.

[12] S. Izadi, R. A. Newcombe, D. Kim, O. Hilliges, D. Molyneaux,
S. Hodges, P. Kohli, J. Shotton, A. J. Davison, and A. Fitzgibbon,
“KinectFusion: Real-time Dynamic 3d Surface Reconstruction and
Interaction,” in ACM SIGGRAPH 2011 Talks. ACM, 2011.

[13] T. Whelan, M. Kaess, M. Fallon, H. Johannsson, J. Leonard, and
J. McDonald, “Kintinuous: Spatially extended KinectFusion,” in RSS
Workshop on RGB-D: Advanced Reasoning with Depth Cameras,
Sydney, Australia, Jul 2012.

[14] M. Nießner, M. Zollhöfer, S. Izadi, and M. Stamminger, “Real-time
3d reconstruction at scale using voxel hashing,” ACM Transactions on
Graphics (ToG), vol. 32, no. 6, pp. 1–11, 2013.

[15] Q. R. Graehling. Feature extraction based iterative closest point
registration for large scale aerial lidar point cloud. Accessed
last 11/16/22. [Online]. Available: https://docs.nvidia.com/cuda/
profiler-users-guide/index.html

[16] K. Koide, M. Yokozuka, S. Oishi, and A. Banno, “Voxelized gicp for
fast and accurate 3d point cloud registration,” EasyChair Preprint no.
2703, EasyChair, 2020.

[17] M. Helmberger, K. Morin, B. Berner, N. Kumar, D. Wang, Y. Yue,
G. Cioffi, and D. Scaramuzza, “The hilti slam challenge dataset,” 2021.

