
Surface Reconstruction
from Arbitrarily Large Point Clouds

Thomas Wiemann, Isaak Mitschke, Alexander Mock, Joachim Hertzberg

Knowledge Based Systems Group
Institute of Computer Science

University of Osnabrück
Osnabrück, Germany

Email: twiemann@uni-osnabrueck.de

Abstract—Generating 3D robotic maps from point cloud data
is an active field of research. To handle high resolution data from
terrestrial laser scanning to generate maps for mobile robots is
still challenging, especially for city scale environments. In this
short paper, we present the results of an approach for surface
reconstruction from arbitrarily large point clouds. To achieve
this, we serialize the large input data into suitable chunks, that
are serialized to a shared hard drive. After computation, the
partial results are fused into a globally consistent reconstruction.

I. INTRODUCTION

Today it is possible to scan large outdoor environments
with 3D laser scanners in short time and high precision.
Terrestrial laser scanners can measure objects from large
distances – typically hundreds of meters – with sub-centimeter
accuracy. Mounted on mobile platforms, the acquired point
clouds can be aligned automatically by combining information
from inertial sensors and satellite based global positioning with
SLAM algorithms [11]. This allows to digitize large areas in
short time. However, in robotic applications like path planning
and autonomous exploration [2], [1], the bare size of the
point clouds prohibits the use of the raw input data for such
purposes.

To make the carried geometric information accessible for
computations on platforms with limited resources, the input
data has to be converted in a representation that can be handled
algorithmically. Our approach to achieve this goal is to com-
pute polygonal representations of the scanned environments.
Polygonal meshes represent the environment in a compact but
precise continuous representation and can be used for path
planning [6], tracking and localization [12] or autonomous
exploration. Some preliminary results based on the approaches
presented in [6] are shown in Fig. I. Here, a mesh reconstructed
from a terrestrial laser scanner mounted on a mobile robot, was
used estimate derivable surfaces (pink) and to compute next
best view poses for further exploration (green markers).

Surface reconstruction is based on the well known Marching
Cubes algorithm [4], which requires that the scanned volume
is subdivided into a regular voxel grid, as the triangulation is
computed locally per voxel. For our setup, a size of 5 cm per
voxel has proven to deliver accurate and compact results [9].

Fig. 1. Top: A triangle mesh used for path planning in unknown environ-
ments. The surface was reconstructed from a part of a 3D point cloud (white)
taken with a terrestrial laser scanner mounted on a mobile robot. Driveable
surfaces (pink) are classified via roughness estimation based on the triangle
normals [6]. New scan positions for further exploration are indicated by the
green markers. Bottom: The robot with laser scanner and a photo of the
scanned environment.

However, in city scale scenarios it is not feasible to generate
voxel grids with that resolution at once, even if state of
the art methods like spatial trees or hashing are used, since
the number of generated voxels would break the memory
limit of current personal computers. In this paper we present
exemplary results of an approach for large scale reconstruction
that splits the input data into chunks that can either be
computed sequentially on a single computer (at the cost of
higher run time) or in parallel in a computing cluster via MPI.
It is implemented in the Las Vegas Surface Reconstruction
Toolkit. Software and data sets are freely available the the
project website [8].

II. RELATED WORK

For most purposes, octrees [5] are the standard data struc-
ture to manage voxels and have been successfully applied

Fig. 2. The Bremen City data set was used to benchmark our reconstruction procedure. The input point cloud is shown on the left with elevation above
ground rendered in a blue to red color gradient. The image on the right shows the complete polygonal reconstruction with 5 cm voxel size.

Fig. 3. Detailed views from different angles at the final reconstruction. Chunking and re-integration did not cause any visible artifacts.

in surface reconstruction. In principle, such a representation
could be used for reconstruction and extended to support
partition of the data, but the main problem with octrees in
this context is that it is quite tedious to search for adjacent
voxels due to the overlying tree structure. Finding adjacent
voxels however is helpful to avoid the creation of redundant
vertices during reconstruction [10]. To overcome this, we use a
simple collision free hash function to manage voxels in a hash
map. Our hash function allows to find adjacent cells directly
if their position within the grid is known.

Triangulation within the voxels is done via Marching Cubes
using Hoppe’s signed distance function [3] (SDF). This re-
quires efficient search for the k nearest points (kNN search).
In our software, we implemented a GPU-accelerated nearest
neighbor search based on the work of Qiu et al. [7]. This
allows us to compute surface normals for the scan points on
the GPU, which speeds up the computations significantly.

III. LARGE SCALE RECONSTRUCTION

Large scale reconstruction is realized using several pro-
cesses that run concurrently either on a single computer
or in a computing cluster with a shared data storage and
a certain amount of RAM per process. For inter process
communication, we use the well known MPI standard. The
data is serialized into partitions on the shared storage into
geometrically coherent chunks. These partitions are then sent
to the slave nodes, which perform the necessary computations
on the their assigned parts and on GPUs if available.

After partitioning, the chunks are sent to the slave nodes for
reconstruction. Now, the the actual cells in the grid holding the
signed distances are computed. Each slave loads the assigned
chunk from the hard disk and instantiates the cells within its
local grid, which are managed via spatial hashing. For each
sub-grid, the SDF values for the vertices are either computed
classically on the CPU or – since we have pre-partitioned
chunks that can be configured to fit into the memory of a
GPU – on a graphics card.

IV. EXPERIMENTS

We performed several experiments to evaluate our dis-
tributed reconstruction. First, we present qualitative results to
show that the global fusion produces consistent reconstruc-
tions. In the second part of the evaluation we analyze the run
time and memory consumption on standard PCs and a cluster
of several high performance computers.

A. Qualitative Results

Fig. 2 shows an exemplary data set that we used for
evaluation. The raw point cloud is rendered in the left image.
This data set was taken with a Riegl VZ400i terrestrial laser
scanner on the market place in Bremen, Germany and contains
a total of 214 million data points. The extension of the
measured volume was approximately 300m×500m×300m.
The reconstructed triangle mesh is shown on the right image
in Fig. 2. Reconstruction was done using a cell size of 5 cm.
The resulting triangle mesh consists of 10 million triangles.

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 10 20 30 40 50 60 70 80

R
u
n
ti

m
e
 (

se
co

n
d

s)

MPI-Nodes

Runtime compared to amount of MPI-Nodes

Total runtime

Fig. 5. Reconstruction time for the Bremen City data set with increased
number of slave nodes.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 200 400 600 800 1000 1200 1400 1600 1800

M
e
m

o
ry

 (
M

B
)

Runtime (seconds)

Memory consuption

LVR
LVR (MPI)

Fig. 6. Memory trace of the reconstruction without segmentation (LVR) and
the new approach. Note that LVR finished after approximately 600 s, while
the distributed version needed 1800 s, but only used a predefined amount of
memory.

Details from the reconstruction are shown in Fig. 3. With the
chosen voxel size of 5 cm the reconstruction preserves most
details from the original point cloud data while reducing the
memory consumption drastically. In the final mesh, there are
no visible artifacts that can be ascribed to the initial partition
of the data.

B. Run Time Analysis

First, we benchmarked the time for distributed normal
estimation using only CPUs and compared it to the GPU
implementation. The results are shown in Fig. 4. It shows the
time spent for tree preparation and actual normal estimation.
The run time on the GPU is several order of magnitudes lower
than the CPU-based search.

To evaluate the scaleability of our approach, we bench-
marked it on a cluster computer consisting of three Dell
Power edge R530 servers with 2 Intel Xeon E5-2680 CPUs
with 28 cores and 192 GB RAM each that were connected
via ethernet in a local network, totaling in a cluster with 84
MPI nodes. In this setup, each node had approximately 6 GB
RAM available for reconstruction. In the experiment, we used
the full resolution version of the Bremen City data set and

reconstructed it with a voxel size of 5 cm and increased the
number of used slave nodes. The results of this experiment are
shown in Fig. 5. In the beginning, the run time scales well with
the number of added slave nodes. With increasing number of
slave nodes, the efficiency decreases. This is mainly due to the
increased I/O operations on the shared data volume and the
increasing network traffic that is generated when more data is
sent between the master node and the slaves. This is an effect
that is typical for this kind of simple cluster layout.

C. Memory Consumption

In a last experiment we compared the memory consumption
of the old sequential approach implemented in LVR on the
desktop PC with GPU. Fig. 6 displays the memory consump-
tion over time on the data set reduced to 80 million points.
This size was chosen, because it is the maximum number of
points that can be handled on the used GPU. The evaluation
clearly shows, that the memory needed for reconstruction is
drastically reduced when the data is split up. However, the
overall run time nearly triples due to the segmentation process
and I/O overhead. But the memory consumption remained
almost constant using pre-segmentation. This clearly indicates,
that our approach can in principle handle arbitrarily large point
clouds.

V. CONCLUSION

In this paper we presented an approach to compute polyg-
onal reconstructions from arbitrarily large point clouds. The
approach was designed to allow parallel computation on MPI
clusters as well standard personal computers. To further speed
up the computation, we implemented a GPU based normal es-
timation approach that can be integrated into the reconstruction
process. Our approach mainly concentrates on overcoming the
RAM limitation that usually occurs when handling large scale
point cloud data on standard computers.

The aim of this research is to generate polygonal maps that
can be used on mobile robots. At this point, we are able to
generate such maps from high resolution point clouds of city
scale environments. Although the computed triangles meshes
are a much compacter representation than the initial point
cloud data, the generated meshes still contain far more trian-
gles than necessary to represent the environments. Hence we
plan o further compress the representation, by integrating mesh
optimization algorithms into the map generation pipeline.

REFERENCES

[1] M. Al khawaldah and A. Nüchter. Multi-Robot Cooperation for Efficient
Exploration. AUTOMATIKA – Journal for Control, Measurement,
Electronics, Computing and Communications, 55(3):276–286, 2014.

[2] W. Burgard, M. Moors, C. Stachniss, and F. Schneider. Coordinated
multi-robot exploration. IEEE Transactions on robotics, 21(3):376–386,
2005.

[3] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle.
Surface reconstruction from unorganized points. Computer Graphics,
26(2), 1992.

[4] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3D
surface construction algorithm. In ACM SIGGRAPH ’87, 1987.

[5] Donald Meagher. Geometric modeling using octree encoding. Computer
Graphics and Image Processing, 19(2):129 – 147, 1982.

[6] S. Pütz, T. Wiemann, J. Sprickerhof, and J. Hertzberg. 3d navi-
gation mesh generation for path planning in uneven terrain. IFAC-
PapersOnLine, 49(15):212 – 217, 2016. 9th IFAC Symposium on
Intelligent Autonomous Vehicles IAV 2016.

[7] D. Qiu, S. May, and A. Nüchter. GPU-accelerated Nearest Neighbor
Search for 3D Registration. In Proceedings of the 7th International
Conference on Computer Vision Systems (ICVS ’09), number 5815 in
LNCS, pages 194–203, October 2009.

[8] T. Wiemann. The las vegas surface reconstruction toolkit, 2014. http:
//www.las-vegas.uni-osnabrueck.de.

[9] T. Wiemann, H. Annuth, K. Lingemann, and J. Hertzberg. An extended
evaluation of open source surface reconstruction software for robotic
applications. J. Intelligent and Robotic Systems, 77(1):149–170, 2015.

[10] T. Wiemann, M. Mrozinski, D. Feldschnieders, K. Lingemann, and
J. Hertzberg. Data handling in large-scale surface reconstruction. In
Intelligent Autonomous Systems 13, pages 499–511. Springer, 2016.

[11] O. Wulf, A. Nüchter, J. Hertzberg, and B. Wagner. Ground truth
evaluation of large urban 6d slam. In 2007 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 650–657, Oct 2007.

[12] J. Wülfing, J. Hertzberg, K. Lingemann, A. Nüchter, T. Wiemann, and
S. Stiene. Towards real time robot 6d localization in a polygonal indoor
map based on 3d tof camera data. IFAC Proceedings Volumes, 43(16):91
– 96, 2010. 7th IFAC Symposium on Intelligent Autonomous Vehicles.

Fig. 4. Run time comparison for normal estimation on CPU (left) and GPU (right). Normal estimation was done using 200 nearest neighbors. The time spent
for tree generation on the whole process is indicated in blue. Note that the time spent on tree generation on the CPU was too small to be visible in the plot.

