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Abstract. Digitization of agricultural processes is advancing fast as
telemetry data from the involved machines becomes more and more avail-
able. Current approaches commonly have a machine-centric view that
does not account for machine-machine or machine-environment relations.
In this paper we demonstrate how to model such relations in the generic
semantic mapping framework SEMAP. We describe how SEMAP’s core
ontology is extended to represent knowledge about the involved machines
and facilities in a typical agricultural domain. In the framework we com-
bine different information layers – semantically annotated spatial data,
semantic background knowledge and incoming sensor data – to derive
qualitative spatial facts about the involved actors and objects within a
harvesting campaign, which add to an increased process understanding.

Keywords: semantic mapping, environment modeling, ontologies, agri-
culture

1 Introduction

Digitization of agricultural processes currently concentrates on recording and
processing telemetry data from individual machines to support precision farming.
This implicitly leads to a machine-centric view on the ongoing processes. But
many agricultural processes are complex, cooperative orchestrations of multiple
machines. Automatic decision support in harvesting campaigns is still limited in
assistance systems, as representations of cooperative agricultural processes and
tools to analyze inter-machine relations are mostly missing.

Information on the whole process can not be derived from a single machine’s
telemetry data, but is covert in the combined telemetry of multiple machines. To
embed this abstract data from different machines in the context of the ongoing
process, machine data has to be fused with additional knowledge and informa-
tion about the environment and the process itself. Most importantly, symbolic
representations of the spatial relations between agricultural machines and their
environment are needed to identify and monitor process states and associated
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events. Analyzing the geo location of individual machines and processing of spa-
tial relations between them is therefore a valuable contribution to automated
process managing in agriculture. Modern agricultural machines already provide
a geo-referenced stream of telemetry data, based on RTK-GPS. The positional
data is often used to inspect the containment of machines in polygonal bound-
aries representing fields and farms, to spatially locate machines at those facilities.
Such a quantitative, geometric analysis already extracts a lot of relevant infor-
mation, but does not account for qualitative relations between the machines and
facilities nor for knowledge representation and reasoning on a semantic level.

Representing such spatial relations in terms of a well-defined semantic termi-
nology allows to infer complex facts, built up from basic spatial relations to take a
process-centric view on harvesting campaigns. This requires a machine-readable
environment model that can be paired with geo-referenced telemetry-data from
agricultural machines to geolocalize individual machines and derive spatial re-
lations between machines and their environment, respectively. To meet these
requirements, we use the semantic mapping framework SEMAP [1] to represent
an agricultural domain. We show how to create a semantic environment model
for agricultural environments and machines and how to connect it to the under-
lying geometric model. We illustrate how to ground qualitative spatial relations
between a static environment and a set of dynamic vehicles with SEMAP.

In an application example, we replay telemetry of a harvesting campaign
to continuously update the spatio-semantic environment model to derive sym-
bolic facts about the ongoing process. Via rule-based inference we analyze the
domain-specific spatial relations of a maize harvesting campaign to detect events
such as the correct positioning of a transport vehicle next to the harvester for
overloading.

2 Related Work

State of the art solutions in digital agriculture allow to record and process teleme-
try data of agricultural machines like position, velocity, and internal parameters
like fuel consumption or mass throughput [2]. This data is used in precision farm-
ing to optimize the application of fertilizers or herbicides, and collected in farm
management information systems to aggregate telemetry data to analyze the
performance of agricultural machines [3, 4]. They also help to plan agricultural
operations by maintaining information about crop rotations [5] or by creating
field boundaries and sub-plots based on GPS data [6] to support the applica-
tion of fertilizers and herbicides tillage strategies [7]. Automated scheduling of
entire harvesting campaigns is also possible [8]. Usually, these solutions operate
on centralized systems with web-based front ends [9]. This often causes severe
latencies due to connectivity issues in remote or rural areas [10].

Fleet overview applications inform the operators about an on-going harvest
operation by exchanging telemetry information between machines in real time
and display vehicle positions on a static 2D map. Process-related decision making
is still completely in the operator’s hands, as these assistance systems do not
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provide a context-dependent and process-oriented analysis. To automatically
detect relevant situations that give insight into the agricultural process – e.g.,
an empty transport vehicle arriving at the field ready for overloading – is a
key feature to increase process transparency, which is necessary for improving
agricultural efficiency through more process-oriented decision support systems.

To solve these problems, existing approaches from semantic mapping in
robotics can be transferred to this application domain. Semantic maps are repre-
sentations that in addition to spatial data provide assignments to known concepts
for the mapped entities, such that semantic background knowledge can be used
to reason about the environment [11]. Recent advances in semantic mapping are
concerned with constructing general models of multi-modal environment data
that can be flexibly queried for task-specific data in individual applications,
see [12] for an overview.

Being able to analyze spatial relations in terms of qualitative predicates is
important in data retrieval and reasoning. To fully utilize qualitative spatial
reasoning, it is necessary to derive qualitative symbolic data from quantitative
metric information. In [13], Wolter and Wallgrün pointed out that this process
of qualification is essential for qualitative spatial reasoning in practical appli-
cations, but still rarely seen. The lack of qualification is also apparent when
working with semantic maps. Tools for performing spatial analysis on quanti-
tative metric data are also seldom used in semantic mapping. In our previous
work [1], we showed the advantages of maintaining environment data in form
of a generalized and persistent model, from which task-specific semantic maps
can be extracted, rather than maintaining and aligning several different layers
of semantic, geometric and topological information in parallel. We proposed to
pair spatial databases and declarative knowledge bases to combine ontological
and logical rule-based inference with spatial querying and analysis capabilities
and called it the semantic mapping framework SEMAP.

In this paper, we integrate an ontology for agricultural processes into SEMAP
to make knowledge about harvesting campaigns accessible for automatic analy-
sis. We use this knowledge together with SEMAP’s spatial reasoning capabilities
to recognize relevant events in an maize harvesting process. In the presented ex-
periment we were able to detect the correct positioning of an overloading vehicle
based on recorded telemetry in an real life harvesting campaign.

3 The SEMAP Framework

The SEMAP framework is designed to represent and manage spatio-semantic
environment data. Its purpose is to provide information about the objects and
the environment in a specific application domain. It connects conceptual knowl-
edge about the environment and factual knowledge about present object in-
stances with their geometric representations to hold a combined spatio-semantic
model that allows spatial analysis as well as semantic inference. To manage the
fundamentally different structure of semantic and spatial information, SEMAP
internally separates environment data into two dedicated databases to ensure op-
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Fig. 1: SEMAP’s architecture features a spatial database and a knowledge base
system, which are combined by a multi-modal querying interface.

timized performance for each data modality especially in terms of data storage
and retrieval. An outline of SEMAP’s internal structure is given in Fig 1. The
semantic part is represented by a knowledge base system component (KB) that
is based on description logics with the obligatory separation into terminological
and asserted knowledge. The environment’s conceptual model and facts about
the environment are represented in the Web Ontology Language (OWL) [14]
and maintained in Apache JENA, which provides inference for ontological and
rule-based reasoning as well as the capability to query the stored knowledge. The
spatial part is a dedicated spatial database system (DB) that stores geometric
primitives, and provides operators for quantitative spatial analysis and spatial
querying. It is implemented as an extension to PostGIS using the SFCGAL
plugin to create custom spatial operators, especially for detecting 3D spatial
relations.

The framework’s strength lies in combining both query systems to support
combined queries with semantic and spatial aspects. In such queries, SEMAP
utilizes the DB’s spatial operators to ground qualitative spatial relations that
are only stored implicitly in the geometric environment representation. Such
relations are automatically inserted into the KB as facts for further inference.
This approach enables rule-based reasoning and to construct complex spatial
queries based on simpler deductions. This multi-modal query interface is ad-
vantageous in real-world applications, as it allows to answer complex questions
about the positions, relations and roles of the stored objects in a natural way.



5

The framework’s core components are designed to be domain-independent, yet
extensible with domain-specific semantic models, rule-sets and geometries. A
more detailed description of the SEMAP framework and its spatial querying
capabilities is given in [1].

Fig. 2: An excerpt of the ontology that implements the semantics of SEMAP’s
environment model.

Fig. 2 sketches SEMAP’s core ontology. It uses standards from the Open
Geospatial Consortium (OGC), because these well-defined models of geo-spatial
data are in alignment with PostGIS’s data types, which were also defined by the
OGC. GeoSPARQL’s SpatialObject and the fundamental distinction between
geometries and features are integrated in SEMAP’s upper ontology.

Here, the concept Geometry describes any kind of spatial primitive and pro-
vides a semantic wrapper for all OGC data types and serves as a bridge to
the well known Simple Feature Ontology. SEMAP’s KB contains a correspond-
ing Geometry sub-concept, for every geometric primitives stored in SEMAP’s
DB. The property semap:hasDbId is used to create an associative link between
the geometric primitive and its semantic wrapper. SEMAP internally uses these
associations to join spatial and semantic data.

The super-concept Feature is used for all things that can be described
spatially like SEMAP’s ObjectModel, which aggregates sets of semantically
wrapped geometries to represent an object. For this, it uses the geo:hasGeometry
property and its two specializations: semap:hasBody composes a set of geome-
tries that constitute the object’s actual body. In case of articulated objects,
the Link and Joint concepts are used to describe the object’s kinematics.
semap:hasAbstraction provides a set of coarser representations, like oriented
and axis-aligned bounding boxes and convex hulls. These abstractions are used
for accelerated spatial processing and enable the analysis of directional rela-
tions like left-of or above-of, based on projection and half space geometries
described in [15].
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To create a spatio-semantic environment model for a particular application,
domain-specific ontologies, knowledge bases and rule-sets can be imported into
SEMAP. To describe domain-specific concepts spatially and reason about them
as part of SEMAP’s environment model, the respective entities can be associated
with an ObjectModel via the semap:hasObjectModel relation, cf. Fig. 4 (b).

4 Applying SEMAP in Agriculture

In this section, we detail the process of customizing SEMAP for a specific ap-
plication domain. Our goal is to create a spatio-semantic model of agricultural
environments and machinery in SEMAP for spatial analysis and rule-based rea-
soning to derive more information about ongoing agricultural processes that
involve multiple machines.

First, we present the description of the semantic model used to represent
agricultural concepts, such as fields, farms and tractors in SEMAP’s knowl-
edge base. After that we discuss how spatial data is added to this model and
how to continuously update the environment model by using telemetry data
from actual agricultural machines. Finally, we make use of SEMAP’s capabili-
ties to ground spatial predicates to answer both spatial and semantic queries. We
demonstrate how to analyze basic spatial predicates between agricultural ma-
chines and their environment and how rule-based reasoning is used to identify
complex and domain-specific spatial relations. The demonstration scenario is the
detection of the correct positions of multiple machines in the planned process,
especially the correct positioning of a transport vehicle ready for overloading in
a maize harvesting campaign.

4.1 The AgriCo Ontology

Our semantic model extends the logistics core ontology (LogiCo) by Daniele et
al. [16]. This semantic model describes environments and resources in logistics.
Since this domain is very similar to the general process of harvesting, we extended
LogiCo with additional concepts needed to represent agricultural processes. We
call this extended ontology AgriCo as depicted in Fig. 3.

Fig. 3: Excerpts of the domain-specific model added to SEMAP. The LogiCo
ontology (yellow) provides a model of static and movable resources, to which the
AgriCo ontology (green) adds agricultural concepts like farms and tractors.
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All components of our model are based on Physical Resources in the real
world, which can be Static or Movable Resources. Three sub-classes are used
to describe static locations of interest: The Facility concept defines areas
and structures designated for a specific purpose in the given domain and the
Facility Structure defines aggregates of different facilities. In AgriCo, for ex-
ample, Farm serves as an aggregate of agricultural facilities like Silos. Addition-
ally, the Static Equipment concept describes utilities available at a facility, e.g.,
a Vehicle Scale for weighing transport vehicles. Another important sub-class
of static resources are the different kinds of Transportation Infrastructure

to represent connections between locations. Since this important concept was
missing in the LogiCo ontology, we added this concept and suitable sub-classes
like Roads and Dirt Roads.

For movable resources, LogiCo gives concepts for Transport Means, i.e.,
trucks, and Movable Equipment such as trailers. AgriCo defines Tractors as
another kind of transportation and the Implement concept to account for var-
ious kinds of machinery that can be connected to a tractor for example plows,
sowers or specialized Harvest Transport Wagons. The latter inherit properties
from the trailer and implement concept, e.g., to denote the volumetric capacity
vie the logico:hasCapacity attribute or describe the interfaces use to control
the active pickup systems and scraper floor via agrico:hasISOBUSInterface.
Furthermore, we added the Harvester to represent combine and forage har-
vesters, which are directly derived from the Movable Resource concept, as they
can not be used for transporting goods in a supply chain.

4.2 Instantiating the Environment Model

The semantic model presented so far provides the conceptual basis from which
instances of agricultural facilities and machinery can be created and described.
To link them to a spatio-semantic data sets in SEMAP, we proceeded as follows:

First, we imported the AgriCo ontology into SEMAP’s KB component. Next,
we allowed that the hasObjectModel property can map from instances of LogiCo’s
Physical Resource to SEMAP’s ObjectModels. This way, the domain-specific
concepts and instances thereof can have a spatial representation in SEMAP.
Finally, we instantiated the agricultural concepts and their spatio-semantic rep-
resentation with an appropriate data set.

To setup static resources in our environment model, we used a set of polygo-
nal boundaries to represent farms and fields and other facilities. Fig. 4 (a) shows
an excerpt of the environment. It consists of the farm’s grounds (blue), three
silos (orange) and a vehicle scale (violet), as well as two fields (green). The data
was modeled in Google Earth and automatically read into SEMAP’s KB and
DB components using a KML file importer. In Fig. 4 (b), the underlying seman-
tic representation is depicted with three instances of AgriCo concepts related
to their object representation using the hasObjectModel relation. Here farm1

connects to farm1 obj. The polygonal boundary farm1 boundary is connected
via the hasConvexHull2D property, which is a sub-property of hasAbstraction.
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To add movable resources to the static environment, we created three di-
mensional and articulated object models of a tractor-trailer combination and a
forage harvester as displayed in Fig. 6 (b). These objects are modeled in the
Unified Robot Description Format, since SEMAP supports this format natively.
The underlying semantic representation is a straight forward extension to the
example in Fig. 4 (b), yet more complex due to the individual links and joints.

To introduce dynamics to our spatio-semantic model of farms and fields,
we used telemetry data recorded on real agricultural machines to continuously
update the position and articulation of the machines within it. We replayed the
machines GPS signals and joint states in the Robot Operating System (ROS)
and connected a bridge node to SEMAP, such that the environment model was
updated accordingly.

(a) The spatial data used to represent a farm (incl. silos) and two fields.

(b) The semantic representation within SEMAP’s knowledge base.

Fig. 4: To represent a farm’s facilities in SEMAP, we used the 2D polygonal
boundaries, shown in (a), stored in the DB component. These spatial model are
connected to instances of the domain-specific concepts of AgriCo via SEMAP’s
ObjectModel concept, as illustrated in (b).
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5 Application Example

By moving the agricultural machines through the static environment in our ex-
perimental setup, the spatial relations between environment and machines and
the machines themselves are changed continuously. SEMAP’s spatial and seman-
tic reasoning capabilities can be used to detect these spatial relations, which gives
insight into the agricultural process underlying the machine activities.

For example, to detect where a movable resource is located topologically,
we check whether its 2D position is spatially in a facility’s boundary. The de-
rived spatial predicate semap:isIn2D is used to infer that the topological relation
logico:isAt holds, too. The reasoning takes place in two steps: First, we make
use of SEMAP’s qualification capabilities to ground spatial relations between
agricultural machines and the environment or between pairs of agricultural ma-
chines. To perform such a quantitative spatial analysis, a suitable query is posed
to SEMAP’s DB backend. Fig. 5 (a) gives an example how to query for object
pairs for whose 2D convex hulls a containment relation holds. The derived re-
sults are then inserted into SEMAP’s knowledge base as qualitative semantic
knowledge about the spatial relations. In case of our example, the objects pairs
found by the query are inserted as facts over the isIn2D relation.

Second, we use the derived knowledge in order to reason about more com-
plex spatial relations or to derive domain-specific information. An example for
such rule-based inference is given in Fig. 5 (b). This rule identifies the topolog-
ical relation of a movable resources being at a facility, by using the 2D spatial
containment relation for grounding the isAt predicate.

rosservice call /containment_query
"reference_object_types: [’Facility’] reference_object_geometry_type: ’ConvexHull2D’
target_object_types: [’MovableResource’] target_object_geometry_type: ’ConvexHull2D’
fully_within: false insert_kb: true"

(a) SEMAP query to extract containment relations.

?machine r d f : t ype l o g i c o : MovableResource
?machine semap : hasObjectMode l ? mach ine ob j
? mach ine ob j semap : ha sPos i t i on2D ?mach ine abs t r pos2D
? f a c i l i t y r d f : t ype l o g i c o : F a c i l i t y
? f a c i l i t y semap : hasObjectMode l ? f a c i l i t y o b j
? f a c i l i t y o b j semap : hasConvexHul l2D ? f a c i l i t y a b s t r c h 2 D
?mach ine abs t r pos2D semap : i s I n 2D ? f a c i l i t y a b s t r c h 2 D
==>
?machine l o g i c o : i sA t ? f a c i l i t y

(b) Rule to ground topological relations based on spatial relations.

Fig. 5: To geometrically ground spatial containment relations, we used the query
shown in (a). The query results where extracted into SEMAP’s KB as facts over
the isIn2D relation and then used the rule (b) to derive that the topological
relation isAt holds between machines and facilities.
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While this seems a simple transition, it is important to note that this rule
infers from a spatial predicate to a topological relation and that based on a
grounding in the quantitative geometric data. Furthermore, the rule is generic
for all instances of Movable Resource at any instance of Facility and its
sub-concepts, which makes it applicable in a wide range of applications. The
underlying spatial querying is also done automatically in SEMAP’s multi-modal
query interfaces, such that further queries to the environment model can be posed
using the high-level relation isAt, without having to deal with the data transfer
from DB to KB explicitly. This is convenient during application development.

(a) Overloading in reality. (b) Overloading in RViz.

? s f h r d f : t ype a g r i c o : Ha r v e s t e r
? s f h semap : hasObjectMode l ? s f h o b j
? s f h o b j semap : ha sLe f tO fP ro j e c t i on2D ? s f h p r o j l 2 D
? tv r d f : t ype a g r i c o : T r a n s po r tV eh i c l e
? tv semap : hasObjectMode l ? t v o b j
? tv semap : hasConvexHul l2D ? t v ab s t r c h2D
? t v ab s t r c h2D semap : i s I n 2D ? s f h p r o j l 2 D
==>
? tv a g r i c o : p o s i t i o n e dFo rOv e r l o a d i n g ? s f h

(c) The rule for grounding the positionedForOverloading relation in SEMAP.

Fig. 6: We used telemetry data from an actual overloading procedure (a), to
move and articulate the machines in ROS and visualize them in RViz (b). We
also synchronized the telemetry with our SEMAP model and used the rule (c) to
identify the correct spatial positioning of two machines for overloading harvested
goods from a forage harvester onto a transport vehicle.

Fig. 6 exemplifies how to combine several basic spatial relations with domain-
dependent knowledge to construct complex domain-specific relations.

For example, we used SEMAP to detect that a transport vehicle (TV) is cor-
rectly positioned for an overloading procedure, due to the directional relations
of the self-propelled forage harvester (SFH). Fig. 6 (a) depicts such a situation
in real life, whereas (b) shows visualization of a similar scene represented in
SEMAP. It shows the object models subject of the rule shown in (c). To iden-
tify that the transport vehicle is properly positioned for overloading, the rule
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checks the trailer’s 2D convex hull for containment in the harvester’s left-of

projection, to verify that the transport vehicle is left-of the harvester. If so, the
relation positionedForOverloading is inferred to hold between the transport
vehicle and the harvester. This is valuable information about the underlying
agricultural process, which was previously covert in the telemetry data of both
machines, but due to SEMAP’s spatio-semantic processing is now explicitly avail-
able within SEMAP’s KB, where it can be used for further processing.

6 Conclusion and Future Work

In this paper we used the SEMAP framework for combined spatial and semantic
reasoning about machine-environment and machine-machine relations in an agri-
cultural domain. To create a semantic model of agricultural environments and
machines, we extended an ontological model from the logistics domain resulting
in the agricultural core ontology AgriCo. Based on this semantic model, we in-
stantiated a data set that combined factual knowledge with spatial data in our
framework. Using recorded telemetry data, we moved and articulated several
agricultural machines to replay a forage maize harvesting campaign. We used
SEMAP’s spatial operators for quantitative spatial analysis to classify contain-
ment relations between fields and machines. Using rule-based reasoning over the
identified relations, we were able to detect process states relevant to analyze the
harvesting process, namely that a transport vehicle is ready for overloading due
to its position relative to the harvester.

Our approach demonstrated that the use of semantic mapping technology in
agriculture is beneficial, as we were able to extract valuable information about
the agricultural process out of the geo-referenced stream of telemetry data. The
derived knowledge about machine-machine and machine-environment relations
is validated in the geometric state of the environment and also available as
machine-readable facts that adhere to a formal ontological model, which opens
up possibilities for the further development of decision support systems.

To further improve SEMAP’s spatio-semantic querying, temporal informa-
tion must be included, too. Currently, the data model is updated continuously
to represent the environment’s current state, but provides neither a history of
past states, nor methods to query about temporal change. This denies the pos-
sibility to detect events by querying the temporal sequence of certain relations
and states. Adding a temporal information layer to SEMAP will be a necessary
next step to realize temporal analysis. For this, stream reasoning approaches like
the Continuous SPARQL framework (CSPARQL) [17] could be used.
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11. Nüchter, A., Hertzberg, J.: Towards semantic maps for mobile robots. Robotics
and Autonomous Systems (2008)

12. Kostavelis, I., Gasteratos, A.: Semantic mapping for mobile robotics tasks: A
survey. Robotics and Autonomous Systems 66 (2015) 86–103

13. Wolter, D., Wallgrün, J.O.: Qualitative spatial reasoning for applications: New
challenges and the sparq toolbox. IGI Global (2010)

14. Bechhofer, S.: Owl: Web ontology language. In: Encyclopedia of Database Systems.
Springer (2009) 2008–2009

15. Borrmann, A., Rank, E.: Topological operators in a 3d spatial query language for
building information models. In: In Proc. of the 12th Int. Conf. on Computing in
Civil and Building Engineering (ICCCBE). (2008)

16. Daniele, L., Ferreira Pires, L.: An ontological approach to logistics. In: Enter-
prise Interoperability, Research and Applications in the Service-oriented Ecosys-
tem, IWEI 13, ISTE Ltd, John Wiley & Sons, Inc. (2013)

17. Barbieri, D.F., Braga, D., Ceri, S., Della Valle, E., Grossniklaus, M.: C-sparql:
Sparql for continuous querying. In: Proceedings of the 18th international conference
on World wide web, ACM (2009) 1061–1062


