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Abstract— We present an optimal and efficient approach to
compute continuous shortest path vector fields on arbitrarily
shaped 3D triangular meshes for robot navigation in complex
real-world outdoor environments. The continuity of the vector
field allows to query the shortest distance, direction and
geodesic path to the goal at any point within the mesh triangles,
resulting in accurate paths. In order to avoid impassable
areas, our wavefront propagation method runs on a modular
extendable multilayer map architecture taking different geo-
metric cost layers into account. We describe the mathematical
foundation of the geodesic distances and continuous vector field
computation and demonstrate the performance in real-world
and multilevel environments on our campus with a tunnel,
ramps and staircases, and in a difficult, steep forest area with
a stone quarry. For reproducibility, we provide a ready-to-use
ROS software stack as well as Gazebo simulations.

I. INTRODUCTION

Robots operating outdoors in forests, agriculture, or rescue

operations, etc. have to cope with variable and uneven terrain.

In such applications it is important to determine the driv-

ability of the terrain between the current pose and the given

goal pose. The representation of 3D structures such as ramps,

curved surfaces, stairways, bridges, underpasses, tunnels or

walls that are not horizontally aligned with the robot opens

up new challenges because they cannot simply be projected

down to a 2D map. Decomposing the environment into

multiple topologically connected 2D maps is often done,

but shifts the problem from path planning in a complex 3D

domain to disassembling the environment into a topological

graph connecting the resulting 2D sub-maps. We aim for

a general map representation and present an approach for

robot navigation in complex environments on 2D-manifolds

represented as 3D triangular meshes. We contribute the

following aspects that work together as a complete applied

system:

• An optimal, highly-efficient continuous vector field

computation that defines the shortest geodesic path to a

goal at any point on the 3D mesh surface.

• A modular, extendable multilayer mesh map to model

the passability of complex outdoor environments

through layers such as roughness, height differences,

steepness, etc.

• A modular mesh navigation ROS software stack that

integrates Move Base Flex (MBF) [1] and our layered
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mesh map, as well as our shortest path vector field

planner and controller.

• 3D real-world datasets and Gazebo simulations to re-

produce our experimental results.

The proposed method is based on the wavefront propagation

principals of the Fast Marching Method (FMM) [2]. The

computation of the vector field and path planning has an

asymptotic runtime of O(n log n), where n is the number of

passable vertices in the mesh, with respect to the navigability

defined by the layers. The resulting vector field can be ac-

cessed in a continuous fashion using barycentric coordinates

and is not restricted to the topology of the mesh. Our ROS

mesh navigation software stack allows to simply integrate

the novel path planning and motion control into higher level

robotics applications, e.g. by using the SMACH task level

architecture [3], or behavior trees [4].

II. RELATED WORK

During the last decades many path planning algorithms

have been proposed which can roughly be categorized as

grid-based, sample-based or geodesic path planning.

A. Path Planning in 2D and 3D Occupancy Gird Maps

Occupancy grid maps are established since decades [5].

Encoding occupancy probabilities is sufficient to support

probabilistic localization and navigation methods [6], [7]. In

1993 and 1995 D* and Focused D* have been introduced

by Stentz [8] as replanning methods distinguishing between

known and unknown obstacles. D* has been extended to

Focused D* by using a focusing heuristic in an A* manner.

In 2002, the Lifelong Planning A* (LPA*) and D* Lite

replanning algorithms have been introduced by Koenig and

Likhachev [9]. In addition to the typical A* distance-to-

goal cost estimate, LPA* maintains a look-ahead value and

consecutively propagates updates whenever these two values

become inconsistent. D* Lite extends LPA*, as it switches

the start to the goal cell similar to Focused D*.

However, the above algorithms are constrained to the grid

topology, only allowing for 45◦ transitions to the eight direct

cell neighbors. Shortest paths constrained to the edges of

8-neighbor transitions can be around 8% longer in 2D grid

maps and constrained to the edges of 26-neighbor transitions

in a 3D occupancy grid map can be around 13% longer than

the actual shortest path in the represented environment [10].

Consequently, Ferguson et al. [11] introduced Field D* in

2005. It uses linear interpolation, defines nodes at cell corners



and takes varying cell costs into account. In 2007 and 2010

the any-angle algorithms, Theta*, and Lazy Theta* have been

introduced by Nash et al. [12], [10]. Unlike the previous

ones, both Theta* algorithms perform line-of-sight checks

in which nodes are also defined at cell corners. In 2013

Anya has been introduced by Harabor and Grastien [13] as

an optimal and exact any-angle path planning method for

simple occupancy grid maps.

In the context of ROS and corresponding map imple-

mentations, Fankhauser et al. introduced Grid Map [14] in

2016 as a multi-layered map representation using an efficient

2D ring buffer representing a 2.5D grid map with floating

point precision. It addresses many of the limitations of

the established ROS map representation costmap 2d [15].

Beside that, 2.5D-map-related environment analysis methods

to represent digital elevation models (DEMs) have been suc-

cessfully applied in rough terrain navigation [16]. Although

they reflect the topography of a surface, DEMs are only able

to encode one surface level with a fixed discrete resolution.

Encoding free space between several levels and the levels

itself is not possible. This limitation can be overcome by 3D

occupancy maps using octrees or voxel hashing [17], [18]

and triangular meshes with no fixed discrete resolution.

B. Geodesic Path Planning on Triangular Meshes

Recently, methods such as [19], [20], [21], [22] have been

developed to compute triangular meshes from sensor data,

including large-scale environments. Although such maps

are now available, they are mainly used for simulation or

rendering, but rarely for navigation.

Brandao et al. [23] present path planning or triangular

meshes for legged robots in an industrial environment, which

uses A* to compute a sequence of triangles between the

start and goal triangle outperforming state-of-the-art sample-

based planners. Similar to the topology restrictions in grid

maps, simple graph based planning methods running on 3D

triangular meshes are usually topologically restricted, too.

Thus, Dijkstra running on triangular meshes can lead to sub-

optimal paths with respect to the shape of the represented sur-

face, as pointed out in [24]. Finding the actual topologically-

unrestricted shortest path on surfaces represented by meshes

– where paths cross triangles – is also known as computing

geodesic distances or paths.

Modern path planning methods running on 3D triangular

meshes have been advanced in the last decade. Yershov and

LaValle [25] present a version of FMM and call it feedback

planning, in which the wavefront propagation starts at the

goal position and the distance field, approximated by linear

interpolation within the triangles, defines the approximate

shortest path from each position to the goal. Yershov and

Frazzoli [26] build on top of the Hamilton-Jacobi-Bellman

equations, FMM, and combine it with an adaptive mesh-

refinement to improve the resolution of an initial simplicial

mesh. Compared to many modern sam ple-based methods,

it is also asymptotically optimal, which means it converges

to the optimal solution, but it outperforms RRT* [27] and

PRM* [28]. Xu et al. [29] present the Fast Wavefront

Propagation (FWP) framework for several path planning al-

gorithms to improve the performance of geodesic algorithms

like the exact Mitchell-Mount-Papadimitriou (MMP) [30]

algorithm, or the exact Chen-Han (CH) [31] algorithm.

Their framework organizes windows with a bucket struc-

ture to process a large number of windows simultaneously

as described in detail in [29]. Additionally, in [29], the

asymptotic runtime, space and overhead complexities of

the most popular algorithms are compared. FMM running

on triangular meshes has an overhead of O(n), a space

complexity of O(n) and time complexity of O(n log n),
and is thereby the fastest known solver with respect to the

asymptotic runtime. Bhattacharya [32] presents S* which

computes shortest paths in configuration spaces of arbitrary

topology, geometry, and dimension of a simplicial complex.

It uses refinements to improve results and has an asymptotic

runtime of O(n(log n+ d4)) where d is the average degree

of a node. However, S* has only been evaluated in 2D

(and projected 3D to 2D), and Theta* has a better runtime,

see [32] for a comparison.

All the above methods were evaluated using artificial data

in the respective publications. We close the gap and propose

an optimal and fast method for shortest path vector field

planning on arbitrary meshes to leverage robot navigation in

complex real-world outdoor environments. Furthermore, our

approach does not use refinements and does not run on 2D

projections from a pre-processing step.

III. WAVEFRONT PROPAGATION

Inspired by physics, alternative approaches have been

introduced. The Hamilton Jacobi partial differential equation

is an alternative formulation of classical mechanics and

equivalent to, e.g. Newton’s laws of motion, Lagrangian

mechanics and Hamiltonian mechanics. It reduces to the

Eikonal equation describing physical waves if the formula-

tions depend on the position state variable only, as described

in [33]. The first two known algorithms that provide solutions

for the Eikonal equation are Tsitsiklis’ algorithm introduced

in 1994 [34] and Sethian’s Fast Marching Method (FMM) [2]

introduced in 1996, solving the isotropic control problems

using first-order semi-Langragian discretizations on Carte-

sian grids, as described in [35]. Many FMM variants have

been introduced in the two last decades, e.g. for car-like

robot-path-planning [36], and Voronoi partitioning [37]. The

original FMM by Sethian [38], [2] was developed as a fast

level set method computing a cost-to-go function in a way

of a wavefront advancing outwards. We adapted FMM to

compute a cost-to-go scalar field u for a single source and

to simultaneously construct a corresponding vector field ~d
during wavefront propagation.

A. Fast Marching Method on Triangular Meshes

Using FMM for path planning, we model a wavefront

starting at a single source s, as sketched in Fig 1a. Similar

to replanning-algorithms or feedback-planning, we start the

propagation at the goal pose, i.e. at s. A mesh consists of

vertices, edges, and triangles, with M = (V,E, F ). FMM
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Fig. 1: The propagating wavefront arcs and the implicit unfolded source
s (a). The distances u1 and u2 to s can be used as radii for intersecting
arcs around v1 and v2 to compute u3 (b).
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Fig. 2: The angle θ is used to compute the direction vector for v3 (a).

The direction vector ~dp for a point p is the linear combination of the three
directions and the barycentric coordinates (b).

uses three sets: The unprocessed set V ′ ⊆ V , the close set

Q ⊆ V and the fixed set S ⊆ V . Initially, V ′ contains all

vertices which are labeled as passable. Q is implemented as a

min-heap map sorting the vertices by the temporary distance

estimate u and thereby allowing fast distance updates in

logarithmic time and extracting the vertex with the smallest

distance value in constant time. The values in the heap Q
may decrease if a solution with a smaller distance is found.

The min-heap lookup data structure Q limits the wavefront

propagation to an asymptotic runtime of O(n log n) where

n is the number of vertices |V ′|. Practically, Q contains

far fewer vertices at runtime, as it only contains vertices

associated with the current wavefront. S contains all vertices

with the final and optimal shortest path distances to s ∈ V ′.

Initialization: First, the triangle△fs ∈ F which contains s
– denoted as |△fs| ∋ s – is picked. Second, the three vertices

vi of △fs are added to Q with the Euclidean distance:

∃!△fs ∈ F , |△fs| ∋ s; Q(vi)← ||s− vi||2∀vi ∈ △fs.

1.) The vertex v ∈ Q with the smallest value in the close

set Q is added to the fixed set S and erased from Q.

2.) Each adjacent neighbor in the fixed set n ∈ Nd(v)∩S
is connected to v through an edge (v, n) ∈ E. This edge

corresponds to one or two triangles △fi ∈ F (v, n) ⊂ F .

We pick △fi = (v, n, v′) ∈ F (v, n) with v′ /∈ S.

3.) Next, we compute the distance uv′ of v′ ∈ |fi|, which

is either unprocessed with v′ ∈ V ′ or in the close set Q and

insert or update the sorted close set with Q(v′) ← u(v′) if

this decreases the distance value of v′ in Q. We loop from

step 2) until all neighbors n have been processed and then

back to 1) until Q is empty.

Note, △vnv′ corresponds to △v1v2v3 in the update step

shown in Fig. 1b and described next.

B. Single Source Update Step

Novotni et al. [39] introduce an update step for a single

source, taking the plane defined by △v1v2v3 into account.

We extend the single source update step to represent the

correct distances as follows: Assuming the distances u1, u2 ∈
R of v1, v2 ∈ S are already computed, a solution for the

distance u3 ∈ R of v3 ∈ Q ∪ V ′ can be found by implicitly

unfolding the source s onto the plane of △v1v2v3. The

calculation of u3 is sketched in Fig. 1b. Let a = ||v2−v3||2,

b = ||v1− v3||2 and c = ||v1− v2||2. Let T be the triangle’s

coordinate system in R
2 with v1 at (0, 0), v2 on the x-axis

with (c, 0), and let v3 have a positive y value with (p, hc).
We are now looking for the coordinates (p, hc) ∈ T and

(sx, sy) ∈ T of v3 and the source s. The source coordinates

(sx, sy) can be found by the intersection of the circles

given by the radii u1 and u2 around v1 and v2 by solving

s2x+s2y = u2
1 and (c−sx)

2+s2y = u2
2 to the variables sx and

sy , or by using the Pythagorean theorem. Note, the heights

hc and sy could also be calculated by Heron’s formula as

an alternative formulation. Next, (p, hc), the coordinate of

v3 in T , has to be calculated by solving b2 = h2
c + p2 and

a2 = (c− p)2 + h2
c . Since we are interested in the distance

from the source s to v3 in T , we choose the solution where

hc ≥ 0 and sy ≤ 0. This results in a solution for (p, hc)
shown in Eq. 1 and Eq. 2 and in a solution for (sx, sy) shown

in Eq. 3 and Eq. 4. Finally, u3 is calculated as the distance

of (p, hc) to (sx, sy) according to Eq. 5. Note, in [39] (p, hc)
is not used in the update step. We added the missing part to

the algorithm’s update step which leads to a correct solution

of the distance calculation for v3. Mitchell et al. [30] showed

in Lemma 3.3 that a planar unfolding of a geodesic path is

a straight line segment. Since we are computing the straight

line, i.e. Euclidean distance (and its angle θ) on the implicit

unfolded triangle between (p, hc) and (sx, sy), see Eq. 5, we

assign the shortest path from s to each accessed vertex v′.

p =
b2 + c2 − a2

2c
(1) hc =

√

b2 − p2 (2)

sx =
u2
1 + c2 − u2

2

2c
(3) sy = −

√

u2
1 − s2x (4)



u3 =
√

(p− sx)2 + (hc − sy)2 (5)

Every time u3 decreases the distance, u3 < Q(v3),
the close set Q is updated. The wavefront moves forward

monotonically due to the nature of FMM and the fulfilled

triangle inequality, thus our approach can be used to generate

a global vector field with s being the local and global

minima.

IV. VECTOR FIELD CONTINUITY

An agent would automatically use the shortest path from

any point on the surface by following the vector field which

corresponds to ∇u(x) if a path exists. The continuous vector

field is computed during the update step described above and

described in the following. A direction vector ~dp at any query

point p ∈ R
3 projected onto the surface is pointing towards

the goal pose s and can be calculated by a linear combination

of the three direction vectors of the corresponding triangle

after the wavefront propagation.

A. Direction Vectors

The computation of the direction vectors towards the goal

pose is sketched in Fig. 2. During the update step described

above, two angles θ1 = ∠sv3v1, and θ2 = ∠sv3v2 with

respect to the sides a and b are computed by applying the

law of cosines using the distances u1, u2 and the newly

computed distance u3, as well as the sides a, b, and c of

△v1v2v3 as denoted in Eq. 6. The corresponding dashed

triangles △u3bu1 and △u2au3 are shown in Fig. 2a.

θ1 = arccos
(

u2

3
+b2−u2

1

2u3b

)

θ2 = arccos
(

u2

3
+a2−u2

2

2u3a

)

(6)

To efficiently access vertex attributes, all vertices corre-

spond to a unique index ιi ∈ Nι ⊂ N. The resulting direction

angle θ of v3 is set to θ1 if u1 < u2 and to −θ2 otherwise and

stored in a map mθ : Nι → R. The negative −θ2 indicates

the opposite direction of rotation. The respective predecessor

ρ ∈ V ′ is set to v1 if u1 < u2, and to v2 otherwise and is

mapped by its index in mρ : Nι → Nι.

Due to corner cases, e.g., obstacles, mesh borders, etc, we

have to check θ1 + θ2 ≤ ∠v2v3v1. If this check is violated,

v3s is not cutting △v1v2v3, as illustrated in Fig. 2 with the

dashed red lines and θ1′ , θ2′ , and u1′ , u2′ , u3′ . This will

result in updating u3 = u1 + b and θ1 = 0 if θ1 < θ2, and

u3 = u2 + a and θ2 = 0 otherwise. Note that these values

may change if shorter distance values for v3 are found as

long as v3 6∈ S.

After the wavefront propagation the respective side a or b
is rotated around the triangle’s normal ~nf using Eq. 7. This

results in the direction vector map ~md(ι), where V (ι) is the

vertex with the vertex index ι.

~md(ι) = R(~mnf
(ι),mθ(ι) )(V (mρ(ι))− V (ι) ) (7)

Finally, a linear combination of these direction vectors with

barycentric coordinates allows to access the vector field in a

continuous fashion.

Fig. 3: Vector field, scalar field and the backtracked path. Cutout of the left
ramp of the physics campus dataset (c.f. Fig. 6).

B. Barycentric Coordinates

To access attributes, e.g. directions, costs, distances, etc.

for any point p ∈ R
3 on the surface between vertices, we

use a linear combination of barycentric coordinates. In our

implementation, we use Heidrich’s method [40] in order to

efficiently compute projected barycentric coordinates of any

query point p and f = △v1v2v3 as stated in Eq. 8. Let

~u = v2 − v1, ~v = v3 − v1, ~w = p− v1 and ~n = ~u× ~v.

γ = (~u×~w)·~n
~n2 β = (~w×~v)·~n

~n2
α = 1− γ − β (8)

The projection of p onto the plane is then given by p′ =
αv1 + βv2 + γv3. Moreover, this representations allows to

easily check if p lies inside (p ∈ |f |), or outside (p 6∈ |f |)
the triangle f . The point p is located inside f if 0 ≤ α ≤
1∧0 ≤ β ≤ 1∧0 ≤ γ ≤ 1 is fulfilled and outside otherwise.

Finally, the direction vector ~dp of p is a linear combina-

tion (Eq. 8) of 1.) the normalized direction vectors of the

corresponding triangle vertices from Eq. 7, where ι1, ι2, and

ι3 are the respective indices of △f , and 2.) the barycentric

coordinates, as sketched in Fig 2b.

~d(p) = α · m̂d(ι1) + β · m̂d(ι2) + γ · m̂d(ι3) (9)

In this way, the path planner and the controller can access

the vector field at any point on the surface in a continuous

fashion. An example of such a field is shown in Fig. 3, where

obstacles are colored red. Next, we describe the integration

into the ROS mesh navigation software stack.

V. MESH NAVIGATION

Our wavefront Vector Field Planner (VFP) implements the

described method and computes a discretized geodesic path

as shown in the experimental results beside the vector field
~d and the scalar distance field u. Incrementally moving p
on △f in the direction of ~dp until p 6∈ |△f | or until s is

reached. Whenever the barycentric coordinates indicate that

p is located inside a neighboring triangle, ∃△fn ∈ Nf (f)
with |△fn| ∋ p, then △f is updated to △fn. To move the

robot along the shortest path vector field ~d, we developed

a Vector Field Controller (VFC) where p is associated with

the current robot pose.

VFP and VFC are plugins for our mesh navigation1

stack integrating MBF2 [1] and the layered mesh map. It

allows to easily exchange, extend and configure planners,

controllers and the underlying layered mesh map according

1 https://github.com/uos/mesh_navigation
2 https://github.com/magazino/move_base_flex



to robot abilities and the complexity of the terrain. Mesh

layers to model roughness, height differences, steepness,

elevation, as well as an inflation layer to inflate impalpable

areas with the robot’s diameter are provided, see [41] for

layer definitions. Thus vertices that represent static obstacles

by exceeding a robot specific threshold in the respective

layer-metric are marked as lethal and not added to V ′. To

visualize the mesh, its layer attributes, and computed scalar

fields we developed RViz plugins together with ROS mesh

messages, bundled as mesh tools3, see [42].

In order to precisely localize a robot in uneven real-world

environments on the surface and in real-time, we adapted

the LeGO Loam [43] approach to use our mesh map for

localization only. The last 20 laser sweeps combined in one

cycle by the LeGO loam lidar odometry are aligned with the

existing map by using a point-to-plane ICP [44]. Next, the

transformation fusion method in [43] is used to combine our

ICP-optimized pose and the lidar odometry to the current

robot pose.

VI. EXPERIMENTAL RESULTS

We evaluated our VFP and VFC in various outdoor envi-

ronments in simulation, as well as in the real world.

A. Evaluation Setup

We choose five challenging outdoor environments (c.f.

Tab. I) to demonstrate the advantages of our mesh navigation

stack. The evaluation environments were recorded with a

high resolution laser scanner, the Riegl VZ400i, producing

highly detailed and colored point clouds, which were aligned

with point-to-plane ICP and a pose graph optimization by

Choi et al. [45], [22]. The registered point clouds were

reduced from several gigabytes to a manageable size using a

voxel grid with 8 cm resolution. Next, the respective dataset

was reconstructed from the set of aligned point clouds with

a Poisson reconstruction [46] implemented in Open 3D [22]

and finally reduced from several gigabytes to a manageable

data size using planar quadric edge collapse [47]. Finally,

the triangular mesh layers were computed as described

in [41] and stored together with the mesh geometry in a

compact HDF5 map file according to [48]. Due to space

constraints, only two datasets are shown in the figures in this

paper. However, the other datasets (cf. Tab. I), corresponding

planner, controller, and mesh layer configurations, as well as

the respective start and goal poses are provided to reproduce

the presented results4.

The runtime and the path length of our VFP are com-

pared to the exact MMP [30] shortest path planner and the

topology-restricted Dijkstra, running on our 3D triangular

mesh map with the same configurations. All mesh map layers

are computed or loaded and combined dynamically when

the map is initialized. Similar to layered grid maps, our

layered mesh map defines occupied or obstacle regions using

thresholds that define the so called lethal areas, which are

marked in red in all corresponding figures. The distance field

is encoded with rainbow colors in the respective figures.

3 https://github.com/uos/mesh_tools
4 https://github.com/uos/pluto_robot

B. Evaluation Results

The Stone Quarry Brockum dataset is shown in Fig. 5,

it was recorded in a forest in Brockum with an old stone

quarry with multiple levels and overhanging structures like

tree branches (cf. Fig. 5a). Although pathways are passable,

the terrain here is challenging with many differently curved

slopes and varying elevations. In the presented scene, the

path forks around a hill structure with trees. A detailed cutout

of the left pathway is shown in Fig. 4. Here, running Dijkstra

on our mesh map (cf. Fig. 4b) already returns a smoother

path than the standard ROS Global Planner running on the

layered costmap 2 with a 2.5D DEM layer (cf. Fig. 4a).

To identify the characteristics shown in Fig. 5b and 5c,

we cut out overhanging structures. Especially for the 2.5D

approach, these mesh parts have to be filtered out to enable

path planning at all in such highly curved and slope-varying

terrains with overhanging structures, which is not necessary

for planning in full 3D, as shown in the following. As shown

in Fig. 5, out VFP computes smooth lines on the surface

around static obstacles resulting in a geodesic path which is

not restricted to the mesh topology. The shown VFP path is

around 4m shorter than the one computed with Dijkstra (cf.

Fig. 5, Tab. I).

The Physics Campus Westerberg dataset shown in Fig. 6

is used to demonstrate path planning in multilevel large-scale

urban outdoor environments. Here, we perform path planning

from the upper to the lower level over a number of slightly

inclined narrow ramps and finally through a tunnel. Fig. 3

shows a detailed cutout with the vector field and scalar field

of the upper left ramp of the scene in Fig. 6. Again, our

VFP computes a smooth geodesic path which is around 10m
shorter than the Dijkstra path, which is limited to the mesh

topology. All path length and runtime results are presented

in Tab. I with respect to the mesh size and dimensions. VFP

results in smoother and shorter paths at the cost of around

1.8 times longer planning time, whereas the exact MMP is

marginally shorter while requiring much more time.

VII. CONCLUSION

The novel update step and integrated vector computation

lead to an optimal goal vector field which can be accessed in

a continuous fashion by using barycentric coordinates. The

vector field ~d and distance field u define the shortest distance

and direction to the goal at any accessible point on the

surface and can be used for path planning and motion control.

Our VFP (Vector Field Planner) implements the described

method and computes an optimal and nearly exact shortest

path to the goal on our modular 3D mesh map which mod-

els real world environments, while our VFC (Vector Field

Controller) follows the computed vector field by querying

the orientation to the goal and costs around the current

pose. We provide a fully integrated but modular extendable

system for ROS using Move Base Flex with our layered

mesh map to load planner, controller and layer plugins,

as requirements may change for differently environments

or robot architectures. Cost layers are implicitly integrated

into the distance field and vector field computation to avoid



(a) Global Planner on 2.5D DEM layer (b) Dijkstra on 3D mesh map (c) VFP on 3D mesh map

Fig. 4: Qualitative comparison between (a) the standard 2D ROS Global Planner running on a 2.5D DEM costmap 2d layer, (b) Dijkstra, and (c) our
Vector Field Planner, both running on our 3D mesh map shown with the respective scalar distance field u. Then shown environment part has an average
elevation of ∼14

◦, ∼ 2.8m, while it is highly curved.

(a) scene photo, front view (b) scalar field and path, front view (c) path on colored mesh, top view

Fig. 5: Path planning in a forest with an old quarry in the background. VFP computes an accurate and smooth geodetic path along the strongly horizontally
curved and inclined forest paths. The path lead around a hill of several meters, from the lower part to the upper part of the quarry.

(a) satellite image
Imagery c©2020 Google, Map data c©2020

(b) wire frame and path (c) distance field and path

Fig. 6: Path planning on the physics campus in Osnabrück from the upper to the lower level over a number of slightly inclined narrow ramps and through
a tunnel. Again, our VFP computes a smooth geodesic path, whereas Dijkstra is limited to the mesh topology.

Dimensions Runtime [ms] Path Length [m]
Dataset # Vertices # Triangles BB x, y, z [m] VFP Dijk. MMP VFP Dijk. MMP

Botanical Garden Osnabrück 719 080 1 430 188 39.05 49.25 6.67 108.1 51.4 1 731.8 26.34 27.47 26.09
Stone Quarry Brockum 992 879 1 904 178 100.58 100.58 23.94 831.0 451.8 7 364.6 110.26 114.67 109.54
Physics Campus Westerberg 719 080 1 617 772 166.02 83.61 26.33 342.9 176.2 1 839.5 200.57 210.15 199.03
Farmer’s Pit Stemwede 401 036 794 509 122.23 104.57 14.84 56.2 36.1 1 348.3 54.04 56.02 52.93
Market Garden Ibbenbüren 1 361 308 2 656 283 174.33 149.61 24.58 1 211.0 695.4 6 316.0 95.71 98.62 94.46

TABLE I: Data set specifications and experimental results, where the runtime is compared to the path length for our VFP, Dijkstra and the exact MMP.

impassable areas in an efficient way. In contrast to graph

based planning approaches, our algorithm is not restricted

to the mesh topology, but has the same optimal asymptotic

runtime complexity as Dijkstra.

Our algorithm is very fast and needs only around 1.8 times

more time than Dijkstra to compute shorter and smoother

paths. Moreover, the path length is negligibly longer than the

path computed by the fastest known exact MMP algorithm,

which computes the exact shortest geodesic path, However,

MMP is much slower, it takes around 21.4 times more

time that Dijkstra. For comparison, with respect to [32],

Basic S* needs around 3.5 times more time that Dijkstra.

In the evaluation, we investigated the performance of our

approach which is not bound to any level restrictions in five

different sized representative reference datasets, in a forest

with a stone quarry, a multilevel environment with a tunnel

and ramps, a botanical garden, an agricultural field, and

a marked garden. In the related video our VFP and VFC

perform planning and motion control in the forest with a

stone quarry in the back, while localization is done with an

adapted LeGO LOAM [43] approach. Finally, our provided

software stack leverages autonomous robot navigation in

complex real-world outdoor environments and can be used

to reproduce the presented results.

For future work, the wavefront propagation can be paral-

lelized to further optimize the runtime [49]. However, even

on the demonstrated large-scale terrains, planning is mostly

performed in less than a second, which is sufficient for many

real-world operations. Additionally, the goal vector field

benefits replanning similar to the grid-based planners D* or

LPA*. An efficient replanning extension which modifies the

vector field to also avoid dynamic obstacles is underway.
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