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Abstract— In this paper we present an approach to introduce
semantics into a SLAM-generated 3D point cloud map from 3D
laser scans of an office environment. For semantic classification
we propose to first reconstruct surface planes in the point cloud.
Using an OWL-DL ontology, we automatically analyze relations
between surface planes in a cluster to generate hypotheses for
present objects. To check these hypotheses we surface sample
appropriate CAD models and use standard ICP to fit the scan
data with the model of the hypothesized object. The final result
is a hybrid semantic map, in which all identified objects have
been replaced by their corresponding CAD models.

I. INTRODUCTION

Robotic mapping techniques developed tremendously over
recent years. Map accuracy and resolution have improved,
and fast and reliable algorithms for solving the SLAM prob-
lem in 6D are available [1], [2], [3]. These methods focus
on solving the problem of integrating the collected data,
typically 3D laser scans, into a global coordinate system.
Such maps are very successful for robot navigation, but for
more complex tasks like context-based action planning a
more meaningful semantic scene interpretation is needed.

A semantic map goes beyond pure geometrical informa-
tion by labeling objects found in the map as instances of
specific classes, thus linking them with semantic background
knowledge. This enables the robot to reason about its en-
vironment, e. g., room types (a room with a dishwasher is
probably a kitchen) or the function of objects (a kitchen
table has other functions than a conference table). Possible
applications of this kind of semantic information include
human-robot interaction and goal-directed manipulation of
the environment, for example in service or rescue robots.

The challenge that arises is to automatically extract this
inherent information from the raw 3D point cloud data. Our
goal is to produce what we call “hybrid semantic maps”
– i. e., an environmental representation where instances of
known objects are replaced with precomputed polygonal
models in the original point clouds. Such maps provide
several benefits for robotic applications: Polygonal repre-
sentations are much more compact than point clouds but
still contain full geometric information. The replacement
of original point cloud data with precomputed models is
feasible, since CAD models of virtually every kind of object
are nowadays obtainable, e. g., from manufacturers, facility
management or from the Internet (Google’s 3D Warehouse,
IKEA etc.).

After such models have been instantiated, the hybrid map
contains more valuable information than the map from the
original scan data. Besides for the applications mentioned
above, the additional knowledge about the real geometry of
the identified objects can be used to improve the geometric

quality of the auto-generated 3D maps. Possible applications
include filling up missing sensor data or using the pose
information of the identified objects for loop closing.

This paper describes a novel approach to automatically
generate hybrid semantic maps of indoor environments from
3D point clouds. The goal is to achieve a top-down seg-
mentation of the scanned scene: First, large connected planar
areas are detected and classified in terms of walls, floors and
ceilings. To the remaining planes, domain knowledge about
indoor environments is applied to detect possible positions
of furniture. In a third step, the detected furniture is replaced
with CAD models.

II. STATE OF THE ART

State of the art in robotic mapping is the use of 2D grid
maps for self-localization. These maps are constructed based
on 2D or 3D laser scans. To produce consistent maps, the
SLAM problem has to be solved. For 2D SLAM, proba-
bilistic methods like FastSLAM [4], GraphSLAM [5] or EM
[6] are state of the art. In the case of 3D point clouds, the
SLAM problem is commonly solved by 6D scan matching
[1], [3], [7]. To further refine the registration quality of
the gained point clouds, a 3D version of Lu and Milios’s
technique [2] can be applied as a post-processing step [8].
All these approaches produce accurate metrical maps, but do
not encode information about the types of objects that are
present in the map.

On the other side of the spectrum, there are approaches for
anchoring semantic information, provided by a conceptual
hierarchy, in spatial maps [9], [10]. However the focus of
these approaches is on place labeling rather than object
recognition and accurate 3D pose estimation, and the envi-
ronment is represented by a 2D map. A complete semantic
mapping framework based on 3D laser data is presented in
[11]; in contrast to our work, the model fitting part uses
cuboids of variable dimensions instead of CAD models. The
work in [12] uses CAD models to train an object detection
system used to label objects in urban 3D laser scans. A robot
manipulation system that integrates knowledge processing
mechanisms with semantic perception routines, including
CAD model matching, is presented in [13].

An idea similar in spirit to our approach is proposed in
[14] where matching of CAD models is utilized to allow
for manipulation tasks such as grasping in a household
environment. Contrary to our approach, the matching itself
is performed within 2D image data, instead of the 3D
environment representation.

Our procedure is able to detect instances of available CAD
models of furniture using ICP matching in 3D point clouds.



Initial poses for these objects are estimated by applying
domain knowledge from a given ontology. With our work
we further close the gap between the 3D mapping techniques
preserving high details of the environment and the potentially
rich context information available in semantic maps.

III. CAD MODEL ANCHORING

As the initial situation for our approach we assume a
successfully registered consistent 3D point cloud, obtained
as for example described in [1]. Our procedure to instantiate
CAD models in registered 3D scenes can be summarized as
follows: First, surface reconstruction is applied to the point
cloud (see Sec. III-A), which helps to find flat surfaces in
the environment. Next, initial poses for possible locations of
models in our ontology are estimated by analyzing the geo-
metrical properties of the labeled planes that were generated
in the first step (III-B). These pose estimations are corrected
using ICP by subsampling a CAD model of the assumed
object (III-C), and fitting it into its region (III-D).

A. Environment Surface Reconstruction

Surface reconstruction from point cloud data is a com-
plex problem. The most common approach is to create a
polygonal mesh representation using Marching Cubes based
methods [15] or to fit mathematically defined surfaces like
planes or splines to the given data [16]. Mesh-based approx-
imations are suitable to hold high-quality representations of
arbitrary surfaces, but automatically generated models com-
monly show more surface patches than needed to describe the
scanned objects. Hence additional optimization procedures
have to be applied [17], [18].

Fitting planes or splines to a given set of data points is
mathematically easy using least squares methods, resulting in
compact representations. The main problem is to determine
the most suitable surface description for a given set of points.
Using the Hough transformation is a possible approach to
solve this problem [19], but it is computationally expensive
compared to mesh-based methods.

For our purposes we decided to use an optimized Marching
Cubes implementation that uses a region-growing algorithm
to extract connected planar surfaces in the model and to rep-
resent them as polygons [18]. The outcome of our procedure
is a three-dimensional polygon mesh, where connected pla-
nar regions are represented as single polygons. Fig. 1 shows
an example. Once such a surface representation has been
computed, it is possible to classify the extracted polygons
by analyzing their orientations and locations towards each
other [20], [18].

B. Initial Pose Estimation

Semantic knowledge about identified objects is stored us-
ing an OWL-DL ontology in combination with SWRL rules
(Fig. 2). Description logics were chosen as the knowledge
representation format, because DL ontologies can be easily
re-used and linked with other sources of domain knowledge,
and fast reasoning support is available.

(a) (b)

Fig. 1: An example of our polygonalization algorithm. The
left image (a) shows the output of the marching cubes
implementation: A room corner is represented by a mesh
of nearly coplanar or orthogonal triangles. The right image
(b) shows the same scene after plane detection.

An OWL-DL reasoner is used to generate hypotheses of
possible object locations and initial pose estimation, based
on the planes extracted in the previous section. Each plane
is added as an individual to the ontology, along with its
orientation (horizontal/vertical, based on the normal), its
height above ground (based on the centroid), its bounding
box and its area.

The definitions of furniture classes in the ontology contain
a set of conditions that are used to classify the planes
into possible furniture instances. For example, most standard
desks have a height of approximately 70 cm. So all horizontal
planes that have about this height are valid candidates for
table tops. To distinguish different types of tables, the surface
area is used. Similar considerations apply to office chairs:
A chair has a ground parallel plane to sit on (at a height
of around 40 cm) and another perpendicular plane near it
(the backrest). Fig. 3 presents, as an example, the ontology
representation of a shelf.

For each object instance returned by the OWL-DL rea-
soner, we calculate axis-parallel bounding boxes and center
points of the constituting planes. The center point of one
predefined plane (e. g., the table top) is used to anchor the
position. Information about the orientation depends on the
geometry of the expected models. The intrinsic orientation
has to be identified and encoded according to the model
class. For some objects this orientation is easy to identify,
e. g., chairs where the normal of the back rest defines the
orientation of the whole object. For other objects like tables,
we apply a Principal Component Analysis (PCA) to the
points that lie within the plane that defines the intrinsic
orientation. This method delivers two new orthonormal basis
vectors that approximate the orientation within the global
coordinate system. For successful matching, all used models
have to be pre-processed to be in a center-point-based local
coordinate system that reflects the assumptions described
above.

C. Model Surface Sampling

The ICP algorithm [21] used for Model Fitting (see
Sec. III-D) needs to establish point-to-point correspondences
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Fig. 2: The relevant parts of the ontology’s class hierarchy.

consistsOfShelf
CAD model: shelf.stl
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Fig. 3: A fragment of the ontology used for initial pose
estimation to represent a shelf.

between given sets of data and model points. In our sce-
nario the data points are given by a registered 3D point
cloud, obtained from several laser scans. Our model data
is provided as a CAD model. The correspondences used
in ICP are defined via point distances, i. e., for each point
in the data set the closest point on the surface of the
model is required. Although it is possible to calculate the
correspondences between the data set and the polygonal
CAD models exactly using ray tracing, for practical reasons,
we decided to sample the surfaces of the models. The main
benefit is that existing point cloud matching software can
be used for fitting. Another advantage is that we can re-use
these precomputed representations, including internal data
structures like kd trees that are needed for efficient matching,
for all instances of the model. The kd tree allows for efficient
nearest neighbor search for a data point and needs to be built
only once when starting the ICP algorithm. Another benefit
of this approach is that even for very complex 3D models, the
registration process can be reduced to standard ICP since the
problem is reduced to registering two rigid 3D point clouds.

The downside of the sampling is that instead of the actu-
ally closest point of the model, we only get an approximation
by the surface sampling. Dense sampling may result in a
better approximation of the underlying CAD model, but will
result in a more expensive kd tree nearest neighbor search.
On the other hand a coarse sampling will result in only
a rough approximation of the CAD model and therefore
negatively affect the quality of the ICP registration process.
Using a sampling with a point density slightly higher the

data point density of the registered point cloud proved to
deliver acceptable results.

For creating a surface sampling of a given CAD model
several approaches are possible, for example random sam-
pling. To achieve a point distribution in the sampling that
emulates the scan point density we use another approach. In
the standard CAD exchange formats, models are commonly
defined as a set of triangular faces. The task of surface
sampling is essentially the task to sample a triangle in three-
dimensional euclidean space. For a given desired sample
point distance, a triangle is sampled in the following fashion.

We assume the triangle to feature three sides of different
length; for isosceles or equilateral triangles we may choose
sides arbitrarily. We label the vectors pointing to the vertices
of the triangle so that a adjoins the shortest with the longest
side and b the longest with the medium side. The remaining
vertex is labeled c (see Fig. 4). To sample the surface of the
triangle we use two generator vectors g1 and g2 which are
defined as

g1 =
b− a

‖b− a‖
d (1)

g2 =
c− a

‖c− a‖
d (2)

where d defines the desired maximal point distance for the
sampling. These vectors point from a to b and from a to c,
respectively, and have a length of d. Employing g1 and g2,
the triangle is sampled as described in Algorithm 1; Fig. 4
depicts an exemplary result of this sampling algorithm.

D. Model Fitting

Once an initial pose is automatically estimated for a
specific instance of an object and a model surface sampling
is constructed, the matching process can commence. This is
done by placing the surface sampling of the corresponding
CAD model at the pose estimate and subsequently running
ICP on the sampled model and the registered scene. For sake
of efficiency we only use points that are within the region of
the initial pose estimate. Since the model points are rotated
and translated during ICP we extend the considered region
within the point cloud to a larger area than the bounding box
of the model instance.

One major problem is how to evaluate the final pose
provided by ICP. While ICP guarantees to converge in a
local minimum, this does not mean that a sampled CAD



Algorithm 1: Triangle Sampling Algorithm
input : a triangle T and a desired sample distance d
output: a point sample P of triangle T

1 P ← ∅ ;
2 {a,b, c} ← order sides(T ) ;
3 g1 ← normalize vec (b− a) ∗ d // see Eq. (1)
4 ;
5 g2 ← normalize vec (c− a) ∗ d // see Eq. (2)
6 ;
7 p ← a ;
8 while p inside of (T ) do
9 s ← p;

10 while s inside of (T ) do
11 P ← P ∪ s;
12 s ← s + g2 ;
13 end
14 p ← p + g1 ;
15 end

a
g1

g2

(a)

b

a

c

(b)

Fig. 4: Exemplary sampling of a triangle. Sample points
are marked by red dots. On the left (a) the solid green
arrows visualize the initial generator vectors g1 and g2 used
to create sample points, starting from vector a, while the
dashed arrows indicate the further process of the sampling
(see Algorithm 1). The right-hand image (b) depicts the
completely sampled triangle.

model is registered correctly into a scene or that an instance
of the CAD model is present in the scene at all. While we
do not claim to have solved this problem, we developed a
heuristic to determine the quality of the final pose: During
ICP, correspondences between data and model points are
established by searching for the nearest model point for
any given data point, which is nearer than some predefined
threshold. For our heuristic we change the perspective: We
look at how closely the data resembles the original model.
To this end we partition our model points into cubes, thus
gaining a more coarse resolution of the model. Then we
check for how many of these cubes corresponding data points
(within the maximal defined distance) can be found. If the
number of associated data points is below a threshold, we
assume that this part of the model was not present in the data
points. Afterwards we look at the ratio of cubes not present
in the data to the number of total cubes for the model. If

TABLE I: Estimated orientations for two table models via
PCA compared to ground truth.

Ground Truth 12.0◦ 25.0◦ 55.0◦ 90.0◦ 125.0◦ 160.0◦

Conference Table 8.2◦ 22.1◦ 51.4◦ 86.0◦ 121.0◦ 157.0◦
Office Desk 4.0◦ 28.1◦ 46.7◦ 82.0◦ 118.0◦ 153.0◦

this ratio is satisfactory, our heuristic assumes the model to
be correctly matched. This involves some parameter tuning
and is one point of future work.

IV. EXPERIMENTAL RESULTS

In this section we will present an example for automati-
cally generating a hybrid semantic map: The match of two
office table CAD models into the scanned point cloud. The
first part will apply and evaluate the techniques for initial
pose estimation described above. The second part presents
the resulting hybrid map.

A. Initial pose estimation

The input to our reasoner is a set of planes that were
extracted for the input data. Fig. 5 shows the input point set
for our experiments together with a surface reconstruction.
The found planar structures in the scene are rendered in a
red to blue gradient, all other surfaces are green. The basic
characteristics of these patches (centroid, normal, bounding
box, area) are used by the reasoner to identify possibly
present models.

As one can see, the large connected surfaces on the floor
are recognized, as well as smaller structures like the tabletops
(gray) or the backrests of the chairs around the conference
table (red, blue, light green). After feeding the extracted
planes into the reasoner, two possible present objects were
detected: The conference table on the right and the desk
on the left. The main remaining problem is to determine
the model’s orientation. To solve this, we use a PCA im-
plementation by Martagh [22] on the vertices of the table
top reconstruction. To analyze the stability of this approach,
we rotated a reference model of the conference table to
different predefined angles to get ground truth and compared
the original rotation angles with the PCA estimation. The
results are shown in Table I. Although the estimated poses
derived from bounding box show several degrees difference
from ground truth, ICP is able to correct these estimations
as shown in the next section.

B. Model Replacement

After the object hypotheses and pose estimations are
generated, we subsample the corresponding CAD models as
described in Sec. III-C. Fig. 6 shows an example sampling.
This synthetic point cloud is then used to refine the initial
pose estimation. Fig. 7 shows the results of the matching
process for the tables that were detected in the given scene.
The pictures on the left clearly show that the ICP process sig-
nificantly improves the estimated poses. For the conference
table we get an almost perfect fit. The fit for the office desk is
not as good as the one for the conference table. Here we have
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Fig. 5: The used input point cloud (a) and the automatically extracted planes (b). The detected planes are colored in a red
to blue gradient based on a running number. All surfaces that were not classified as belonging to a plane are rendered in
green. Walls and ceiling in the original data set were manually removed to create a suitable perspective.

(a) (b)

Fig. 6: Exemplary sampling of a CAD Model: On the left (a)
a CAD of one of our conference tables is shown, (b) depicts
the result of our sampling algorithm. CAD model courtesy
of Assmann Büromöbel GmbH & Co. KG

an offset to the right of about two centimeters. This is due
to registration errors in the used point cloud and differences
between the CAD model and the real world object. The real
object shows clearances that are not considered in the model.

V. CONCLUSION AND FUTURE WORK

This paper has sketched a new approach to anchor object
instances of known classes in point cloud data using domain
knowledge to generate hybrid semantic maps. The usability
of our method was demonstrated in a practical example
where instances of two different tables were found in a
given point and replaced with CAD models. The results
achieved until now and presented in this paper reveal some
further questions. We are currently working on extending our
domain-knowledge representation. Combining the ontology
with first-order probabilistic reasoning promises to be more
robust towards inaccurate or incomplete sensor data.

A second point to improve is a better automated evaluation
of the final pose of the model fitting. Currently the only

automatically generated measure of quality is the output of
the ICP algorithm, i. e., the average point-to-point distance
between the data and the model set. Clearly this error
function does not solely depend on the final estimated pose,
but also on other factors like the density of the surface
sampling. Imagine the same 3D CAD model sampled with
different densities and placed in the same 6D pose into a
scene. The model data set with the higher point density will
generally produce a lower point-to-point distance error – if
the desired sampling distance is set accordingly, one can
ensure that the coarsely sampled model points are a subset
of the dense surface sampling. Although ICP will inherently
terminate in a local minimum, this is not enough to ensure
that the final pose generated by ICP does in fact correspond
to the correct one for a given object in a scene. Therefore
a different measure, which will yield information about the
quality of the final pose, independent of the density of the
surface sampling, is highly desirable.

Another direction of research is to create a feedback loop
from the gained knowledge into the robot’s behavior, for
instance, to actively collect data based on domain knowledge.
A conference table, for example, usually has several chairs
around it. So it would be reasonable for a robot to search
for more, if it has already detected the table and one single
chair, to collect the expected information.
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J. Hertzberg, “Globally consistent 3D mapping with scan matching,”
Robot. Auton. Syst., vol. 65, no. 2, pp. 130–142, 2008.

[2] F. Lu and E. Milios, “Globally consistent range scan alignment for
environment mapping,” Auton. Robot., vol. 4, pp. 333–349, April 1997.

[3] M. Magnusson, T. Duckett, and A. J. Lilienthal, “Scan registration for
autonomous mining vehicles using 3D-NDT,” J. Field Robot., vol. 24,
no. 10, pp. 803–827, October 2007.

[4] D. Hähnel, D. Fox, W. Burgard, and S. Thrun, “A highly efficient
FastSLAM algorithm for generating cyclic maps of large-scale en-
vironments from raw laser range measurements,” in Proc. IEEE/RSJ



Fig. 7: Results of the ICP model matching process for the two table models. The left column shows the pose of the conference
table before and after matching. The offset of the initial pose estimation from the final pose is indicated by the yellow arrows.
The picture on the right shows the CAD models of both detected tables rendered in the original point cloud.

Intl. Conf. on Intelligent Robots and Systems (IROS), Las Vegas, USA,
2003.

[5] S. Thrun and M. Montemerlo, “The GraphSLAM algorithm with
applications to large-scale mapping of urban structures,” Int. J. Robot.
Res., vol. 25, no. 5/6, pp. 403–430, 2005.

[6] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. The MIT
Press, September 2005.
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