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Abstract— In this paper, we present a new combination
of a biologically inspired attention system (VOCUS – Visual
Object detection with a CompUtational attention System)
with a robust object detection method. As an application, we
built a reliable system for ball recognition in the RoboCup
context. Firstly, VOCUS finds regions of interest generating a
hypothesis for possible locations of the ball. Secondly, a fast
classifier verifies the hypothesis by detecting balls at regions
of interest. The combination of both approaches makes the
system highly robust and eliminates false detections. Further-
more, the system is quickly adaptable to balls in different
scenarios: The complex classifier is universally applicable to
balls in every context and the attention system improves the
performance by learning scenario-specific features quickly
from only a few training examples.

Index Terms—visual attention, object classification.

I. INTRODUCTION

A fundamental problem in the field of robotics is the

perception of the environment. Our work is inspired by

the biological two stage process of searching for an object

in a visual scene [17]: First, human attention is caught

by regions with object-specific features such as color or

orientations. Second, recognition processes restricted to

these regions verify or falsify these hypotheses. Our system

is designed after these two stages.

This paper proposes a scheme for learning and detecting

soccer balls through the combination of the computational

attention system VOCUS with a classifier. Recognizing

soccer balls as an application in the Robot World Cup

Soccer Games and Conferences (RoboCup) [8] has been

a tough problem to solve because of the lack of definite

characteristics describing a ball. Our solution is reliable,

scale-independent and color-adaptable in the sense that it

can be applied to balls of any size, surface pattern and

color.

Our approach consists of a training phase, an adaptation

phase, and a detection phase. In the training phase, the

classifier is exhaustively trained using balls of different

sizes, colors, and surface patterns from a wide variety of

training images. The output of the training is a cascade of

classifiers that in turn consist of a set of decision trees.

In the adaptation phase, VOCUS is quickly adapted to a

special scenario: it learns from few example images (here:

2) the properties of the scenario, e.g., the color of the

ball and its intensity contrast to the environment. This

adaptation results in a set of feature weights describing

the ball in its surroundings. In the detection phase, first,
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Fig. 1. The recognition system consists of the attention system VOCUS
providing object candidates and a classification system verifying the
hypothesis. The combination yields a flexible and robust system.

VOCUS computes regions of interest by weighting the im-

age features with the learned weights. Second, the classifier

is applied to these regions, verifying the object hypothesis

(Fig. 1). This approach makes the system flexible as well

as robust.

The visual attention system VOCUS consists of a

bottom-up part computing data-driven saliency and a top-

down part and enabling goal-directed search. Bottom-up

saliency results from uniqueness of features, e.g., a black

sheep among white ones, whereas top-down saliency uses

features that belong to a specified target, e.g., red when

searching for a red ball. The bottom-up part, also described

in [7], is based on the well-known model of visual attention

by Koch & Ullman [11] used by many computational atten-

tion systems [12], [1]. It computes saliencies according to

the features intensity, orientation, and color and combines

them in a saliency map. The most salient region in this

map yields the focus of attention. The top-down part is

new: it uses previously learned feature weights to excite

target-specific features and inhibit others.

Balls are classified according to the Viola-Jones classi-

fier [22]: The shape of the ball is learned by using edge-

filtered and thresholded images, represented by compu-

tationally efficient integral images [22]. The Gentle Ada

Boost learning technique [5] is used to learn a selection

of Classification and Regression Trees (CARTs) that select

an arrangement of Haar-like features to classify the object.

Several selections are combined into a cascade of classi-

fiers. This learning phase is relatively time-consuming, but

only needs to be executed once, since the classifier is then

general enough to apply to any ball shaped object.

The most common techniques for ball detection in

RoboCup rely on color information. In the last few years,

fast color segmentation algorithms have been developed to

detect and track objects in this scenario [10], [19]. The

community agreed that in the near future, visual cues like

color coding will be removed to come to a more realistic

setup with robots playing with a “normal” soccer ball [20].



Treptow and Zell learn with Ada Boost conglomerations

of Haar like classifiers and arrange them in a cascade to

recognize balls without color information [20]. However,

in previous work [16] we show problems with learning non

symmetric object patterns in differently illuminated envi-

ronments. To overcome this problem, we preporcessed the

input with edge detection and learned classification and re-

gression trees (CARTs) instead of simple conglomerations

of feature classifiers and accomplished color-independent

ball detection for various balls. To reduce a significant

amount of false detections, where the classifier marked

various round shapes, e.g., the heads in Fig. 7, we propose

here an attention algorithm that is quickly adapted on the

spot to a specific ball. It yields several region hypotheses.

With the combination of both systems, we eliminate the

false detections and identify only the intersection of the

two classified sets as correct. In this way, the ball detector

can efficiently be applied to more complex images, without

worrying about false detections.

The combination of an attention system with classifica-

tion has also been done by Miau, Papageorgiou and Itti who

detect pedestrians on attentionally focused image regions

using a support vector machine algorithm [15]. Walther

and colleagues combine in [23] an attention system with

the object recognizer of Lowe [14] and show that the

recognition results are improved by the attentional front-

end. Nevertheless, all of these approaches focus on bottom-

up attention and do not enable goal-directed search. To our

knowledge, this is the first approach combining a top-down

modulated attention system with a classifier.

The rest of the paper is structured as follows: First, we

describe the attention system VOCUS in section II. We then

discuss briefly the process of learning and detecting balls in

section III. The results of each algorithm independently as

well as in combination are given in section IV and, finally,

section V concludes the paper.

II. THE ATTENTION SYSTEM VOCUS

In this section, we present the goal-directed visual

attention system VOCUS (Visual Object detection with

a CompUtational attention System) (cf. Fig. 2). With

visual attention we mean a selective search-optimization

mechanism that tunes the visual processing machinery to

approach an optimal configuration [21]. VOCUS consists

of a bottom-up part computing data-driven saliency and

a top-down part enabling goal-directed search. The global

saliency is determined from bottom-up and top-down cues.

In the following, we first describe the computation of the

bottom-up and then of the top-down saliency.

A. Bottom-up saliency

1) Feature Computations: The first step for computing

bottom-up saliency is to generate image pyramids for each

feature to enable computations on different scales. Three

features are considered: Intensity, orientation, and color.

For the feature intensity, we convert the input image into

gray-scale and generate a Gaussian pyramid with 5 scales

s0 to s4 by successively low-pass filtering and subsampling

Fig. 2. The goal-directed visual attention system VOCUS with a bottom-
up part (left) and a top-down part (right). In learn mode, target weights
are learned (blue line arrows). These are used in search mode (red short
arrows).

the input image, i.e., scale (i + 1) has half the width and

height of scale i.
The intensity maps are created by center-surround mech-

anisms, which compute the intensity differences between

image regions and their surroundings. We compute two

kinds of maps, the on-center maps I ′′
on for bright regions on

dark background, and the off-center maps I ′′
off: Each pixel

in these maps is computed by the difference between a

center c and a surround σ (I ′′
on) or vice versa (I ′′

off). Here, c
is a pixel in one of the scales s2 to s4, σ is the average of

the surrounding pixels for two different radii. This yields

12 intensity scale maps I ′′
i,s,σ with i ε {on, off}, s ε {s2-s4},

and σ ε {3, 7}.
The maps for each i are summed up by inter-scale

addition
⊕

, i.e., all maps are resized to scale 2 and then

added up pixel by pixel yielding the intensity feature maps

I ′i =
⊕

s,σ I ′′i,s,σ .

To obtain the orientation maps, four oriented Gabor

pyramids are created, detecting bar-like features of the

orientations θ = {0 ◦, 45 ◦, 90 ◦, 135 ◦}. The maps 2 to 4

of each pyramid are summed up by inter-scale addition

yielding 4 orientation feature maps O′
θ.

To compute the color feature maps, the color image

is first converted into the uniform CIE LAB color space

[2]. It represents colors similar to human perception. The

three parameters in the model represent the luminance

of the color (L), its position between red and green (A)

and its position between yellow and blue (B). From the

LAB image, a color image pyramid PLAB is generated,

from which four color pyramids PR, PG, PB , and PY

are computed for the colors red, green, blue, and yellow.

The maps of these pyramids show to which degree a color

is represented in an image, i.e., the maps in PR show

the brightest values at red regions and the darkest values

at green regions. Luminance is already considered in the

intensity maps, so we ignore this channel here. The pixel

value PR,s(x, y) in map s of pyramid PR is obtained by

the distance between the corresponding pixel PLAB(x, y)
and the prototype for red r = (ra, rb) = (255, 127). Since

PLAB(x, y) is of the form (pa, pb), this yields: PR,s(x, y) =
||(pa, pb), (ra, rb)|| =

√

(pa − ra)2 + (pb − rb)2.



On these pyramids, the color contrast is computed by

on-center-off-surround differences yielding 24 color scale

maps C ′′
γ,s,σ with γ ε {red, green, blue, yellow}, s ε {s2-s4}, and

σ ε {3, 7}. The maps of each color are inter-scale added

into 4 color feature maps C ′
γ =

⊕

s,σ Ĉγ,s,σ.

2) Fusing Saliencies: All feature maps of one feature

are combined into a conspicuity map yielding one map

for each feature: I =
∑

i W(I ′i), O =
∑

θ W(O′
θ), C =

∑

γ W(C ′
γ). The bottom-up saliency map Sbu is finally

determined by fusing the conspicuity maps: Sbu = W(I)+
W(O) + W(C)

The exclusivity weighting W is a very important strategy

since it enables the increase of the impact of relevant

maps. Otherwise, a region peaking out in a single feature

would be lost in the bulk of maps and no pop-out would

be possible. In our context, important maps are those

that have few highly salient peaks. For weighting maps

according to the number of peaks, each map M is divided

by the square root of the number of local maxima m that

exceed a threshold t: W(M) = M/
√

m ∀m : m > t.
Furthermore, the maps are normalized after summation

relative to the largest value within the summed maps. This

yields advantages over the normalization relative to a fixed

value (details in [7]).

3) The Focus of Attention (FOA): To determine the

most salient location in Sbu, the point of maximal acti-

vation is located. Starting from this point, region growing

recursively finds all neighbors with similar values within a

threshold and the FOA is directed to this region. Finally, the

salient region is inhibited in the saliency map by zeroing,

enabling the computation of the next FOA.

B. Top-down saliency

1) Learning mode: In learning mode, the user marks

a rectangle in a training image specifying the region that

has to be learned. Then, VOCUS computes the bottom-

up saliency map and the most salient region inside the

rectangle. So, the system is able to determine automatically

what is important in a specified region. It concentrates on

parts that are most salient and disregards the background

or less salient parts.

Next, weights are determined for the feature and con-

spicuity maps, indicating how important a feature is in the

specified region. The weights are the quotient of the mean

saliency in the target region mr and in the background

m(image−r): wi = mr/m(image−r). This computation

considers not only which features are the strongest in the

region of interest, it regards also which features separate

the best region from the rest of the image.

Several training images: Learning weights from one

single training image usually yields good results if the

target object occurs in all test images in a similar way,

i.e., on a similar background. To enable a more stable

recognition even on varying backgrounds, we determine

the average weights from several training images by com-

puting the geometric mean of the weights, i.e., wi,(1..n) =
n

√

∏n
j=1 wi,j , where n is the number of training images.
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Fig. 3. Left: Sobel filter applied to a colored image and then thresholded.
Right: Edge, line, diagonal, center surround and 45◦ features are used for
classification.

An algorithm for choosing the training images is proposed

in [6]. It showed that, usually, even in complex scenarios

5 training images suffice; for ball detection, already two

training images yielded the best performance.

2) Search mode: In search mode, firstly the bottom-up

saliency map is computed. Additionally, we determine a

top-down saliency map that competes with the bottom-up

map for saliency. The top-down map is composed of an

excitation and an inhibition map. The excitation map E is

the weighted sum of all feature maps that are important

for the learned object, namely the features with weights

greater than 1. The inhibition map I contains the feature

maps that are not present in the learned object, namely the

features with weights smaller than 1:

E =
P

i(wi∗Map
i
)

P

j(wj )
∀i : wi > 1,

I =
P

i((1/wi)∗Map
i
)

P

j(wj )
∀i : wi < 1.

The top-down saliency map S(td) is obtained by: S(td) =
E − I . The final saliency map S is composed as a

combination of bottom-up and top-down influences. When

fusing the maps, it is possible to determine the degree to

which each map contributes by weighting the maps with a

top-down factor t ∈ [0..1]: S = (1 − t) ∗ S(bu) + t ∗ S(td).

With t = 1, VOCUS looks only for the specified

target. With t < 1, also bottom-up cues have an influence

and may divert the focus of attention. This is also an

important mechanism in human visual attention. E.g., a

person suddenly entering a room catches immediately our

attention, independently of the task. For the application

discussed in this paper, we always use t = 1 and use the

bottom-up saliency only to learn the weights of the training

objects. Thus, the robot focuses its attention completely on

the ball and not to play foul on other robots.

III. COLOR-INDEPENDENT BALL CLASSIFICATION

In this section we briefly discuss the classifier for ball

detection that is applied to the foci of attention. The

algorithm here refers to previous work discussed in [16],

which was inspired by Viola and Jones’ boosted cascade

of simple classifiers for fast face detection [22].

A. Color Invariance using Linear Image Filters

The problem with recognizing general shapes, such as

balls, as in our particular case, is the number of possibilities

in the visual appearance of a ball. A ball can take on any

color and size and may have any pattern on its surface. In

order to generalize the concept of a ball, the initial goal
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Fig. 4. Left: Computation of feature values F in the shaded region is
based on the four upper rectangles. Middle: Calculation of the rotated
integral image Ir. Right: Four lookups in the rotated integral image are
required to compute the feature value a rotated feature Fr.

was to eliminate any color information in the data images

representing the balls.

To detect the edges in the image, we use linear image

filters followed by a threshold to eliminate noise data,

which would then be given as input to the classifier, which

in turn handles differences in size, pattern, lighting, etc.

For this paper, we are using a Sobel filter, as described

in [4].

In order to eliminate the color information in the images,

we apply the filter to the colored image and then use a

threshold t to include any pixel in any of the 3 color

channels that crossed the threshold t value in the output

image. The resulting image is a binary image including

the thresholded pixels of the 3 color channels. A typical

output image of this technique is shown in Fig. 3 (left).

This edge detection and thresholding technique is ap-

plied to all images used as input to the training of the Haar

classifier. The training process is described in the following

subsections.

B. Feature Detection using Integral Images

There are many motivations for using features rather

than pixels directly. For mobile robots, a critical motivation

is that feature based systems operate much faster than

pixel based systems [22]. The features are called Haar-

like, since they follow the same structure as the Haar

basis, i.e., step functions introduced by Alfred Haar to

define wavelets. They are also used in [13], [3], [20],

[22]. Fig. 3 (right) shows the eleven basis features, i.e.,

edge, line, diagonal and center surround features. The base

resolution of the object detector is 30×30 pixels, thus, the

set of possible features in this area is very large (642592

features, see [13] for calculation details). A single feature

is effectively computed on input images using integral

images [22], also known as summed area tables [13]. An

integral image I is an intermediate representation for the

image and contains the sum of gray scale pixel values of

image N with height y and width x, i.e.,

I(x, y) =

x
∑

x′=0

y
∑

y′=0

N(x′, y′).

The integral image is computed recursively, by the formu-

las: I(x, y) = I(x, y − 1) + I(x− 1, y) + N(x, y)− I(x−
1, y − 1) with I(−1, y) = I(x,−1) = I(−1,−1) = 0,

therefore requiring only one scan over the input data. This

intermediate representation I(x, y) allows the computation

of a rectangle feature value at (x, y) with height and width

(h, w) using four references (see Fig. 4 (left)):

F (x, y, h, w) = I(x, y) + I(x + w, y + h) −

I(x, y + h) − I(x + w, y).

Σ h  (x) < 0t Σ
t

h 
 (x

) >
 0

...

thr. = 0.01048

thr. = −0.000175

−1.0

−1.0

0.9939

−0.9863 0.3326

thr. = 0.06808

thr. = 0.007923

Fig. 5. Left: A Classification and Regression Tree with 4 splits.
According to the specific filter applied to the image input section x, the
output of the tree, ht(x) is calculated, depending on the threshold values.
Right: A cascade of CARTs [16]. ht(x) is determined depending on the
path through the tree.

For the computation of the rotated features, Lienhart

et. al. introduced rotated summed area tables that contain

the sum of the pixels of the rectangle rotated by 45◦

with the bottom-most corner at (x, y) and extending till

the boundaries of the image (see Fig. 4 (middle and

right)) [13]:

Ir(x, y) =

x
∑

x′=0

x−|x′−y|
∑

y′=0

N(x′, y′).

The rotated integral image Ir is computed recursively, i.e.,

Ir(x, y) = Ir(x−1, y−1)+Ir(x+1, y−1)−Ir(x, y−2)+
N(x, y) + N(x, y − 1) using the start values Ir(−1, y) =
Ir(x,−1) = Ir(x,−2) = Ir(−1,−1) = Ir(−1,−2) = 0.

Four table lookups are required to compute the pixel sum

of any rotated rectangle with the formula:

Fr(x, y, h, w) = Ir(x + w − h, y + w + h − 1) + Ir(x, y − 1) −

Ir(x − h, y + h − 1) − Ir(x + w, y + w − 1)

Since the features are compositions of rectangles, they are

computed with several lookups and subtractions weighted

with the area of the black and white rectangles.

To detect a feature, a threshold is required. This threshold

is automatically determined during a fitting process, such

that a minimum number of examples are misclassified.

Furthermore, the return values (α, β) of the feature are

determined, such that the error on the examples is mini-

mized. The examples are given in a set of images that are

classified as positive or negative samples. The set is also

used in the learning phase that is briefly described next.

C. Learning Classification Functions

1) Classification and Regression Trees: For all 642592

possible features a Classification and Regression Tree

(CART) is created. CART analysis is a form of binary

recursive partitioning. Each node is split into two child

nodes, in which case the original node is called a parent

node. The term recursive refers to the fact that the binary

partitioning process is applied over and over to reach a

given number of splits (4 in this case). In order to find the

best possible split features, all possible splits are calculated,

as well as all possible return values to be used in a split

node. The program seeks to maximize the average “purity”

of the two child nodes using the misclassification error

measure. Fig. 5 (left) shows a CART classifier.



2) Gentle Ada Boost for CARTs: The Gentle Ada Boost

Algorithm [5] is used to select a set of simple CARTs

to achieve a given detection and error rate [13]. In the

following, a detection is referred to as a hit and an error

as a false alarm.

The learning is based on N weighted training exam-

ples (x1, y1), . . . , (xN , yN), where xi are the images and

yi ∈ {−1, 1}, i ∈ {1, . . . , N} the classified output. At

the beginning of the learning phase the weights wi are

initialized with wi = 1/N . The following three steps are

repeated to select CARTs until a given detection rate d is

reached:

1) Every classifier, i.e., a CART, is fit to the data.

Hereby the error e is calculated with respect to the

weights wi.

2) The best CART ht is chosen for the classification

function. The counter t is incremented.

3) The weights are updated with wi := wi · e−yiht(xi)

and renormalized.

The final output of the classifier is sign(
∑T

t=1 ht(x)) >
0, with ht(x) the weighted return value of the CART. Next,

a cascade based on these classifiers is built.

D. The Cascade of Classifiers

The performance of a classifier is not suitable for object

classification, since it produces a high hit rate, e.g., 0.999,

but also a high error rate, e.g., 0.5. Nevertheless, the hit

rate is much higher than the error rate. To construct an

overall good classifier, several classifiers are arranged in a

cascade, i.e., a degenerated decision tree. In every stage of

the cascade, a decision is made whether the image contains

the object or not. This computation reduces both rates.

Since the hit rate is close to one, their multiplication results

also in a value close to one, while the multiplication of

the smaller error rates approaches zero. Furthermore, this

speeds up the whole classification process.

An overall effective cascade is learned by a simple

iterative method. For every stage the classification function

ht(x) is learned, until the required hit rate is reached. The

process continues with the next stage using the correct

classified positive and the currently misclassified negative

examples. The number of CARTs used in each classifier

may increase with additional stages.

IV. EXPERIMENTS AND RESULTS

First the performance of the classifier is shown. Then,

the attention algorithm is additionally applied to adapt the

detection and to reduce the false positives.

A. Results of the classifier alone

The ball detection cascade was learned with a total

of 1000 images, with complex scenes included in the

training set, and tested by using three soccer balls of

different colors and patterns. The process of generating the

cascade of classifiers is relatively time-consuming but it

only needs to be executed once, provided a good cascade

is generated. Fig. 6 shows detection results on five different

kinds of balls, thus the CARTs form a correct dependency

Fig. 6. Five different kind of balls are detected by the classifier.

of features. Since only the upper two balls (white and

yellow/red ball) and the red one given in Fig. 7 were used

for learning, the figure demonstrates the classifier’s ability

to generalize to all balls.

For each kind of ball we ran the test with 60 images,

making a total of 180 test images. The results in Table I

reveal how many red, white or yellow/red balls were

correctly classified or not detected, as well as the number

of false positives for each ball. The problems we were

facing with this approach was the difficulty to differentiate

between soccer balls and other spherical objects (Fig. 7).

TABLE I

DETECTION RATE OF THE CASCADE OF CLASSIFIER DEPENDING ON

THE USED NUMBER OF STAGES. THE CASCADE WITH 10 STAGES WAS

USED FOR THE EXPERIMENTS WITH THE ATTENTION SYSTEM.

# stages Correct Not Detected False Pos.

red ball 52/60 8/60 114
white ball 9 48/60 12/60 70

yel/red ball 57/60 3/60 108

Total 157/180 23/180 292

red ball 45/60 15/60 52

white ball 10 44/60 16/60 45

yel/red ball 57/60 3/60 63

Total 146/180 34/180 160

red ball 45/60 15/60 51
white ball 11 42/60 18/60 47

yel/red ball 56/60 4/60 65

Total 143/180 37/180 163

red ball 44/60 16/60 26
white ball 12 29/60 31/60 31

yel/red ball 37/60 23/60 23

Total 110/180 70/180 80

The detection rate of the classifier is adjustable, i.e., a

lower number of stages of the cascade increases the number

of detections (hits), but also the amount of false detections.

By combining the classifier and the attention algorithm the

false positive detection rate will be reduced.

B. Combining the classifier and the attention algorithm

The output of the combination of the two algorithms is

the intersection of both result sets. The balls detected must

be found both by the ball classifier as well as the attention

algorithm. First, the foci are found in the image. Then, the

classifier tries to detect balls at these specific regions. The

results of the combination are shown in Table II. The test

data is composed of a set of 60 realistic RoboCup images

for each ball, where there is exactly one ball in each image.

These were taken with backgrounds of different lighting

(color) and complexity. The classifier searches areas of the

first 5 foci found by the attention algorithm.

The combination is very useful in eliminating false

positives in images. This is shown in Fig. 7, where the false



TABLE II

DETECTION RATE OF COMBINED ALGORITHM. COLUMN 2

(ATTENTION) SHOWS WHICH OF THE 5 FOCI POINTS TO THE BALL

(AVERAGE).

Att. Classifier only Att. and Class.

Found False Pos. Found False Pos.

red Ball 1.0 45/60 52 45/60 3

white ball 1.0 44/60 45 41/60 0

yel/red b. 1.2 57/60 63 55/60 20

Total 1.07 146/180 160 141/180 23

Fig. 7. Top: Input images including round objects. Middle: False alarms
in filtered images. Bottom left: False positives eliminated, ball not found.
Bottom right: False detections eliminated.

positives we were suffering from with the classifier alone

are eliminated. The focus of attention is calculated in ca 1.5

sec. and the classification at these region of interest needs

200 ms (image size: 240 × 320, Pentium-M 1.7 GHz).

The bulk of the running time of VOCUS is taken up by

the feature computations. These may be parallelized by

splitting up the processing to several CPUs [9] or with

dedicated hardware [18] what makes the system real-time

capable. We consider this for future work.

V. CONCLUSIONS

Using the visual attention system VOCUS combined

with a fast classifier, we have designed a robust ball

detection system with a very low misclassification rate,

even in complex, cluttered images. Due to the use of an

edge detection Sobel filter and a threshold to preprocess

the training images for the cascade, the classifier is color-

invariant, leaving the color to be learned by the attention

system. Assuming short-term prior knowledge about the

ball to be used for a RoboCup match, VOCUS is quickly

adjusted to the ball with very few images.

The success of the algorithm is reached by only search-

ing for balls in regions hypothesized by the attention

algorithm to contain the ball, thereby eliminating false

positives. Although the algorithm misses a few balls, what

we are concerned with is how it will perform in the

RoboCup environment. In this case, the reliability of the

algorithm seems to be sufficient. Even if the ball is not

detected in one in every 5 pictures, for example, the robot

will still be able to follow it quite confidently.

Needless to say, much work remains to be done: As

the detection of regions of interest is currently relatively

slow compared to the ball detection, the next step is to

work on increasing the efficiency of the attention system

and therefore of the whole detection scheme. In addition it

is planned to enhance the presented algorithms by adding

time dependent behavior either by using standard tracking

with particle filters or by using a time dependent attention

control.
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