
Planning under uncertainty through goal-driven
action selection

Juan Carlos Saboŕıo1 and Joachim Hertzberg1,2

1 Institute of Computer Science, University of Osnabrück
Wachsbleiche 27, Osnabrück, Germany

2 DFKI Robotics Innovation Center (Osnabrück), Albert-Einstein-Straße 1,
Osnabrück, Germany

Abstract. Online planning in domains with uncertainty and partial ob-
servability conveys a series of performance challenges: agents must obtain
information about the environment, quickly select actions with high re-
ward prospects and avoid very expensive mistakes, while interleaving
planning and execution in highly variable and uncertain domains. In or-
der to reduce the amount of mistakes and help an agent focus on directly
relevant actions, we propose a goal-driven, action selection method for
planning in (PO)MDP’s. This method introduces a reward bonus and
a rollout policy for MCTS planners, both of which depend almost ex-
clusively on a clear specification of the goal and produced promising re-
sults when planning in large domains of interest to cognitive and mobile
robotics.

1 Introduction

Planning under uncertainty requires deliberating over actions, their effects, and
computing values that reflect a combination of some form of utility or reward
and their probability. Uncertainty in planning domains may come from non-
deterministic actions or from incomplete knowledge about the environment and
the agent’s current state. These planning problems are often modelled as Markov
Decision Processes (MDP’s) or Partially Observable MDP’s (POMDP’s), and
solved using many well known methods among which Monte-Carlo Tree Search
(MCTS) is a popular choice, especially in the online planning community. UCT
is the modern MCTS standard [1], and it guarantees asymptotic convergence
and solutions that minimize regret by expanding a tree of states and select-
ing actions following the UCB1 formula [2]. An extension of UCT for partially
observable domains, called POMCP [3], constitutes the (arguably) most general
Monte-Carlo POMDP solver. As such POMCP is a basic starting point for online
POMDP planning and the most obvious alternative to traditional, point-based
POMDP solvers, most of which are simply incapable of solving moderately large
problems.

We are interested in problems that can be modelled as POMDP’s for sev-
eral reasons: POMDP’s explicitly represent the effect of information-gathering
actions, actions are assumed to be non-deterministic, and policies depend on a

correct representation and estimation of the agent’s true state. In other words,
POMDP’s correctly model the full extent of robotic task-planning in a mathe-
matical framework with a strong analytical background. We are also interested
in transferring these methods to planning onboard robots, but unlike many com-
mon AI problems, robot planning domains tend to be orders of magnitude more
complex. Often, planning problems are reduced to their minimal and necessary
elements and, while still potentially large, do not address the challenges that
robots face when planning in the “real world”: a massive amount of states that
are reachable by the algorithm and yet, mostly irrelevant for any given goal.
This means robot planning using POMDP’s must follow a very strict, guided,
goal-driven mechanism to avoid excessive computation.

The challenge to overcome in planning under uncertainty then becomes that
of avoiding a very large number of states that contribute little to reaching the
goal state, and identifying those that provide a significant contribution. This
amounts to producing satisficing behavior, potentially overlooking parts of an
optimal policy but generating visible results more quickly in very large planning
domains. This approach responds to our attempts to provide a formal inter-
pretation of the intuitive concept of “relevance”, which in planning terms may
be seen as a reliable (albeit imperfect) attentional filter guiding action selec-
tion, which may open up ways of handling problems with high dimensionality.
Planning algorithms should be able to quickly identify promising (high expected
value) states and focus on getting there. State values represent a weighted aver-
age of future rewards, so the problem reduces to quickly locating these sources
of future rewards. One relatively simple idea is preferring actions that lead to
subgoals (subsets of some terminal state) while avoiding those that don’t, and
encouraging these actions by providing additional, positive rewards. Achieving
a subgoal objectively brings the agent a step closer to achieving a larger goal,
and so we use this idea to formalize a metric of state-to-goal proximity.

We propose partial goal satisfaction as a way to compute the proximity of
states to goals and provide a reward bonus in action selection, which easily be-
comes an action selection policy for Monte-Carlo rollouts. This is by no means
a complete solution to online planning onboard robots, but rather a contribu-
tion towards the improvement of action selection in planning algorithms, when
information about the goal is available. The effect is that the planning agent
is encouraged to pursue certain promising actions, and receives optimistic value
initializations in newly discovered states. This is a way of implicitly helping an
agent or robot do the right thing by avoiding less promising alternatives during
planning.

Existing approaches that address large planning spaces include value approx-
imation and state aggregation, but these work under the assumption that there
are large groups of states that can be clustered together (due to similarity or
other reasons) using fixed criteria. At the moment we are interested in how agents
may use knowledge of their goal(s) to improve their action selection criteria, in
particular by focusing on only a few good alternatives when many options are

available, as is the case of domains with high variability and large branching
factor.

In the following sections we discuss previous related work, and proceed to
explain our proposal. We then provide a simple example in a fully observable
MDP and two examples of large POMDP’s, as well as an analysis of experimental
results. We finalize by discussing the challenges of online POMDP planning and
comment on future directions.

Please note that this is an extended version of a conference paper (see [4]). We
introduce a new planning domain, test our proposed method in this new domain,
and provide further analysis and considerations not present in our previous,
related publication.

2 Notation

We rely on the standard notation for an MDP: let S and A be finite sets of states
and actions respectively and T (s, a, s′) = P (s′|s, a) the probability of reaching
state s′ when executing a in s, which yields a real-valued reward R(s, a, s′). An
MDP is the tuple 〈S,A, T,R〉, with discount factor γ.

In a POMDP, an agent receives an observation ω ∈ Ω with probability
O(s, a, ω) = P (ω|s, a) and maintains an internal belief state b ∈ B, where b
is a probability distribution over states and b(s) is the probability of s being
the current state. A POMDP is therefore 〈S,A, T,R,Ω,O〉. The sequence ht =
(a0, ω1, . . . , at−1, ωt) is the history at time t. Notice the complexity of planning
in belief space, a |S|-dimensional hyperplane.

Many POMDP planning algorithms directly search over a tree of beliefs,
explicitly reasoning about and choosing valuable (informative) beliefs, produc-
ing policies that are also given in terms of beliefs. We will however present our
action selection bias in terms of states with mixed observability (states that
contain both fully and partially observable features). This responds to two core
principles: 1) Exploiting the structure of problems to simplify POMDP plan-
ning is possible and necessary, and in robotic task planning one simple and fair
assumption is that there are some fully-observable features. 2) A state with fully-
observable features can be sampled at any given point, using an approximator
that provably approaches the true belief state, greatly reducing the complexity
of planning.

3 Previous work

POMDP planning has a very extensive literature that spans decades. Important
highlights include the realization that value functions are piecewise-linear and
convex (PWLC) and can thus be approximated by a PWLC function [5]. Algo-
rithms such as Witness [6] or Incremental Pruning [7] actively select and discard
vectors that correctly approximate the optimal value function. Anytime algo-
rithms include HSVI [8], which follows heuristics derived from upper and lower
bounds of the value function, PBVI [9], which carefully selects belief update

points and SARSOP [10], that avoids non-reachable beliefs. PBVI and SARSOP
were actually tested in limited robotic applications or similar scenarios, but all
of these algorithms are restricted to POMDP’s so small, they fail to represent
most robot planning scenarios.

Instead, POMCP follows a generative model approach through a POMDP
simulator and an adapted version of UCT [3]. Its key contributions are approxi-
mating the current belief state using an unweighted particle filter, and expand-
ing a tree of histories instead of a tree of states. This combination successfully
addresses the curse of dimensionality and makes it possible to perform online
planning in large POMDP’s. Because this is a key improvement, this paper as-
sumes a belief-state approximator and focuses on states with partially observable
elements, instead of explicit belief states. The concept of mixed observability has
produced positive results even outside of MCTS algorithms [11]. A similar Par-
tially Observable UCT-based algorithm with more detailed belief selection also
exists [12].

In order to address the state-space complexity of large POMDP’s, well known
techniques include clustering states and generalizing state or belief values [13],
[9], function approximation [14] and random forest model learning [15]. These
methods are based on fixed aggregation criteria that do not respond to the
connection between states and goals, and despite (some of them) being anytime
algorithms they still follow the slow belief tree search approach.

It is also possible to generate abstractions for planning and learning over
hierarchies of actions [16], [17]. This is inconvenient for general planning, as
relatively detailed, prior knowledge of the domain is required to manually create
these hierarchies. Recent work however shows a promising way to automatically
construct action hierarchies [18].

Planning algorithms for MDP’s and POMDP’s often overlap with reinforce-
ment learning (RL) methods, with the difference that in RL the agent must
find an optimal policy while discovering and learning the transition dynamics.
Reward shaping is commonly used in RL to improve an agent’s performance
by awarding additional rewards for certain preferred actions, implicitly defining
subgoals. This generates a decision process with a different reward distribution
and therefore different convergence properties, but potential-based reward shap-
ing (PBRS) has been shown to preserve policy optimality [19]. A study of PBRS
in the context of online POMDP planning can be found in [20].

Building on these arguments, this paper reflects our efforts to provide a
general-purpose, PBRS bias for action selection under uncertainty, in order to
address the complexity of planning in large domains using only partial informa-
tion, as is the case of robotics.

4 Measuring goal proximity

An ideally efficient planning algorithm should quickly separate good or promis-
ing states from bad or unwanted states. In other words, it should quickly prefer
states that lead to the goal and avoid a large number of those that don’t. Most

planning domains, even those without clearly specified goals (eg. pure RL tasks),
have terminal states or conditions that specify what must be accomplished and,
to some extent, what subgoals the agent should pursue. In robotics, it is reason-
able to assume planning agents are somewhat informed and aware of at least part
of their goal(s). Any sufficiently detailed state description (such as a feature vec-
tor) provides information to compute, for any given state, some numerical score
representing how many features in the terminal state have already been accom-
plished. The larger this number is, the closer this state is to being a terminal
or a goal state. We call this idea partial goal satisfaction (PGS), formalized in
equation 1. A previous version of this section, including equations, was published
in [4].

PGS is simple to implement for fully observable features, which can be easily
counted in meaningful ways (eq. 2). For partially observable features, information
gathering actions should increase the probability that their current, estimated
value is correct, thus also affecting the probability of an agent being in some
given state (b(s)). In other words, collecting information about a given set of
partially-observable features yields a better estimate of the world’s current, true
state. The simplest, most general approach is therefore measuring some form
of uncertainty or entropy and providing rewards as this uncertainty is reduced
(eq. 3). Let s ∈ S be a state, decomposed into countable discrete features si,
G+ be the set containing the observable features present in the goal, G− the
set of observable restrictions, ∆(s) the set of states reachable from s (similar to
the transitive closure of T (s, ·)) and Gp the set of partially or non-observable
elements, then:

pgs(s) =
∑

si /∈Gp

v(si) +
∑

sj∈Gp

w(sj) (1)

where:

v(si) =

1 iff si ∈ G+

x ∈ (0, 1) iff ∃s′ ∈ ∆(s) s.t.:

s′k ∈ s′ ∧ s′k ∈ G+

0 iff si /∈ {G+ ∪G−}
−1 iff si ∈ G−

(2)

and

w(sj) =

{
0 iff H(sj) 6 TH

−1 otherwise
(3)

This means the different features in each state are evaluated depending on
whether they are partially observable (sj ∈ Gp) or not. Positive, observable fea-
tures add points and negative features deduct points. State changes that lead
to a positive feature (s′k ∈ G+) in a future state (s′ ∈ ∆(s)) yield a fraction
of a point and help implicitly define subgoals (eg. interacting with an object

referenced in the goal, such as picking up the coffee cup that goes on the ta-
ble), and if no relevant features are present no points are awarded or taken.
Partially-observable features are scored based on the entropy of their underlying
distribution, punishing features or states with high entropy. Whenever enough
information is gathered and the entropy is reduced below some threshold TH ,
this punishment is removed. This encourages the agent to quickly get rid of this
penalty by executing a number of information gathering actions, which in turn
may lead to discovering new reward sources (eg. interacting with relevant but
previously unrecognized elements). In principle any combination of the individ-
ual elements in the goal may be considered a subgoal for scoring purposes, and
only completing all of them simultaneously yields the total, problem-defined ter-
minal reward. This scoring is derived from a clearly specified goal, which should
always available to a planning agent or robot. Some very specific problems, how-
ever, might also benefit from introducing some amount of domain information.

PGS may be useful in different contexts, but it is intended as an optimistic
value initialization method that allows an agent to identify subgoals and exploit
immediate opportunities if available. As such, it addresses action selection under
uncertainty, not the full planning problem. Using PGS directly to solve classical
planning problems, such as some Blocks World configuration, may result in overly
greedy actions. As explained in the next subsections, PGS is intended to be used
as a reward bonus in planning algorithms, and as a rollout policy in the context
of Monte-Carlo or similar planning algorithms, where optimistic assumptions
will eventually be corrected (if they’re wrong) and the problem solved properly.

4.1 PGS in reward shaping

Reward shaping is a well-known technique used to improve the performance of
(PO)MDP algorithms and RL problems. It works by adding a small, additional
reward to some state transitions, encouraging the agent to choose certain im-
plicitly preferred actions. In practice, the amount of reward bonus often comes
from an in-depth analysis of the structure of the problem and provides some
form of heuristic bias in action selection. In our case, instead of providing ex-
plicit, domain-dependent knowledge to shape rewards, we use the PGS function
to encourage the agent to pursue courses of action leading to the completion of
subgoals. The reward bonus produces a new reward distribution and therefore a
potentially different problem, one with additional reward sources. Following the
PBRS form however, guarantees the introduction of implicit subgoals doesn’t
affect the algorithm’s convergence and, therefore, policies are transferable to the
original problem.

Reward shaping substitutes the usual reward function in an MDP with:

R(s, a, s′) + F (s, a, s′) (4)

where R is the problem-defined reward distribution and F is a reward bonus.
If F has the form

F (s, a, s′) = γφ(s′)− φ(s) (5)

then it is a potential function and eq. 4 is potential-based. We now define
φ(s) for PGS as

φ(s) = αpgs(s) (6)

where α a scaling factor. Because most (PO)MDP algorithms already use γ
to refer to the discount factor, from now on we will refer to γPGS when in the
context of PBRS. In practice, transitions to states that are closer to a subgoal
(positive reward source) will produce a positive difference, transitions to states
that are farther from subgoals generate a negative difference, and other transi-
tions cancel each other out. Normally reward shaping functions are highly specific
for particular problems, but PGS manages to attain simplicity and generality.

4.2 PGS as a rollout policy

Monte-Carlo Tree Search algorithms, such as UCT and POMCP, work by sam-
pling sequences of states from a probabilistic transition model. A tree of states
(or in the case of POMCP a tree of histories) is progressively expanded and the
average returns and visit counts are maintained per tree node. When enough
statistics are available (eg. all known successors of a state have been visited)
the UCB1 rule is used to select an action. When a new state is discovered, a
rollout or random simulation is performed and its outcome used as an initial
value estimation. Rollout policies are therefore largely responsible for the per-
formance of MCTS online planning algorithms. Using PGS as a rollout policy,
the agent quickly focuses on actions that directly contribute to the completion
of (sub)goals and, likewise, avoids undesirable actions. Selecting actions that
maximize state-to-goal proximity can implicitly summarize a very rich array of
knowledge and heuristics, that must otherwise be given explicitly. To the best
of our knowledge, the effect of evaluating goal proximity within the context of
Monte-Carlo rollouts hasn’t yet been systematically studied.

Using PGS as a rollout policy is very simple: Let s be the current state and
A a set of actions. Then select the action a ∈ A leading to the state s′ ← (s, a)
that satisfies the largest amount of subgoals, where ties are broken randomly.
The action selection policy is formalized in eq. 7:

A(s) = arg max
a

pgs(s′ ← (s, a)) (7)

In line with the goal-based approach, A could be defined as the action set
consisting of legal actions and uncertainty reducing actions, avoiding information
gathering actions if their effects do not provide more information (eg. if feature
j ∈ s affected by such action already satisfies H(sj) 6 TH). For example, avoid
action “scan object 3” during rollouts if there is enough information to assume
it is a cup.

Because PGS is computed as a difference between the current and previous
states (eq. 5), when γPGS = 1 only newly completed subgoals produce positive
values. For example imagine a robot tasked with collecting and delivering a cup
of coffee: during planning, standing next to the cup offers the possibility of pick-
ing it up, satisfying a subgoal that yields a reward bonus, therefore becoming
the preferred action of the rollout policy. Once holding it, dropping the cup in
any place other than the correct location reverts this condition and produces a
negative reward, meaning it will never be chosen in a rollout (albeit eventually
during simulation, if all actions are systematically sampled). Online Monte-Carlo
planning produces an action recommendation only after arbitrarily many simu-
lations have been carried out, but starting out with the (seemingly) right action
greatly improves performance. Unlike with PGS, improved rollout policies often
rely on manually designed heuristics and explicit preferred actions.

5 Results

We tested PGS in two well-known and commonly used benchmark problems,
as well as a new problem introduced in this paper. The first one is known as
the “Taxi domain”, and it defines a fully observable MDP useful to test basic
functionality. The second is Rocksample, a POMDP that can be scaled up to
fairly large state spaces. The third problem, explained in more detail below,
is called Cellar and is a derivation of Rocksample with additional objects, ob-
servations and a different reward distribution, in an attempt to more closely
resemble robotic planning. For the taxi problem we implemented our own ver-
sion of UCT, and for the last two we modified the POMCP source code. All
tests ran on a desktop workstation with an Intel i7-4790 CPU, 20 GB RAM and
Debian GNU/Linux, and both planners are programmed in C++.

The challenge for robot planning under uncertainty is achieving good per-
formance within a finite horizon, fast enough, even in large problems. These
scenarios show the performance of PGS using limited resources (very few or
relatively few Monte-Carlo simulations) and how it scales in considerably large
POMDP’s.

Some of the results presented in this section were previously published in
[4]. Subsection 5.1, however, contains additional experiments and subsection 5.3
(Cellar domain) is completely new.

5.1 Taxi domain

The taxi domain, first proposed in [17], is a simple, fully-observable MDP often
used to test planning and learning algorithms. The taxi agent moves in any of
four directions in a 5×5 grid and must pick up a passenger located in one of four
possible depots, and bring it to another depot. A slight variation is the “fickle
taxi” in which movement is non-deterministic: with a small probability (eg. p =
0.1) the taxi will end up East or West of its intended direction. Possible actions
are moving North, East, South or West, collecting a passenger when standing on

the same grid cell or dropping the passenger (when carrying one). Rewards are
−1 for each regular move, −10 for dropping the passenger in the wrong location
and 20 for delivering a passenger correctly, which also terminates the episode.
We chose one instance of the taxi domain and obtained the total discounted
reward of its optimal policy, 8.652 (with γ = 0.95), in order to compare it with
the experimental results. This particular configuration and in general the taxi
domain are illustrated in figure 1, where the dark cell at the top left corner is
the goal depot where the passenger must be dropped. The walls shown in the
picture are also included in the experiment which means the agent’s movement
is restricted, in cells next to walls, to only open, adjacent cells.

Fig. 1: The taxi domain

Because all elements are fully observable, PGS in the taxi domain is easy to
formalize. We simply award 0.25 points for picking up the passenger and 1 point
for dropping it at the correct depot (G+). There are no restrictions (G− = ∅).
The terminal state reward is preserved but PGS reward substitution is used
for the rest, with γPGS = 1 and α = 10 to reflect the punishment for illegally
dropping a passenger. Finally, a discount factor of γ = 0.95 and search depth
of 90 steps were used within UCT. It is common to allow the taxi to start only
over a depot, but in our experiments it could be anywhere on the grid. We
ran UCT with PGS in both (regular and fickle) versions of the taxi domain,
and obtained the average discounted rewards and running times over 1000 runs.
Table 1 shows the result of repeated runs on the fixed task (fig. 1) and a set
of randomly generated episodes (randomized origin and destination depots, and
taxi starting location) using 1024 simulations, extremely few for Monte-Carlo
standards.

Results are promising if we compare the average discounted reward with the
optimal policy in the fixed (non fickle) task (8.652). Restricting the amount of
computation to only 256 simulations per move (≈ 1.6 s. per episode), the PGS-
based planner achieved an average discounted reward of 5.089. On random tasks
it is important to mention that episodes were terminated after 5 s., but their
(negative) reward still averaged.

Transition Episodes Avg. Return Time

Normal
Fixed 6.161 3.049
Random 4.257 3.531

Fickle
Fixed 3.275 4.410
Random 2.138 4.176

Table 1: Performance in the taxi domain with 1024 simulations

Averaging performance, especially in stochastic domains, may hide interest-
ing details of particularly good runs. We ran a separate batch of 1000 episodes
using 1024 simulations, of which 616 finished in 2 s. or less and 797 in 3 s. or less.
In these test the statistical mode was the maximum discounted reward (8.652),
meaning most runs found the optimal policy.

Finally, figure 2 shows how the PGS method scaled in the Taxi domain. Per-
formance was averaged over 1000 randomly generated runs, with a more strict
acting budget of 35 steps but a more generous timeout per episode of 30 s.
to allow for enough planning time with up to 8192 simulations. PGS quickly
achieved satisfactory performance, even with very few simulations which trans-
lates into a very short planning time (shown at the top). We don’t include com-
parative results with plain UCT (without PGS) because, in practice, it required
(comparatively) excessive amounts of time and simulations to achieve even little
improvements in performance.

0 0.1 1 10

Total planning time (s.)

101 102 103 104

1

2

3

4

Simulations

A
v
g
.

D
is

co
u
n
te

d
R

ew
a
rd

PGS

Fig. 2: Performance in the Taxi domain

These results show how performance can be substantially improved in fully
observable tasks by following a goal-driven, action selection method that im-

plicitly exploits the problem structure. In the following subsections, we present
results in problems with partial observability.

5.2 Rocksample

Rocksample, originally found in [8], is a commonly used problem that roughly
simulates a Mars rover tasked with collecting valuable rocks. This problem corre-
sponds to a POMDP in which the location of the agent and the rocks are known,
but the value of these rocks is initially unknown and must be determined by the
use of a noisy sensor that returns one of two observations, good or bad, with a
given reliability. Rocksample[n, k] defines an n× n grid with k rocks, where the
agent may move in any of four directions, sample a rock if standing directly on
top of it, or use the sensor on any rock (action check i for rock i) for a total
of 5 + k actions (see fig. 3). Rewards are 10 for sampling good rocks, −10 for
sampling bad rocks, 10 for exiting (East) and −100 for leaving the grid in any
other direction [8]. We used POMCP as a POMDP solver [3], but modified it to
test our proposal.

Fig. 3: Special layout for Rocksample[11, 11]

POMCP uses slightly enhanced rocksample states, where the probability that
a rock is good is updated directly after every corresponding check action, using
the sensor efficiency and the previous likelihood. We defined C = G+ ∩ G− to
be the set of collected rocks, and Gp the remaining rocks. Scoring function v(si)
returns 1 for good rocks with good observations (G+) and −1 for bad rocks (G−).
Function w(sj) returns −1 if Hb(pr) > 0.5, that is, if the binary entropy of rock
r (sj) is higher than 0.5. POMCP comes with a preferred actions policy, which
uses manually encoded heuristics such as “head North if there are rocks with
more positive observations” or “check rocks that have been measured less than

five times and have less than two positive observations”. Clearly, PGS succeeds
in avoiding this level of over specification.

We used γPGS = 1 and α = 10 (to reflect the difference in rewards re-
ceived when sampling good and bad rocks). This scoring function deducts points
for undesirable states (eg. collecting bad rocks, high entropy for any rock) and
only adds points when collecting good rocks, but further negative points are
withdrawn once the knowledge about any particular rock increases (i.e. entropy
< 0.5). In practice this means that during rollouts check will be preferred if it
reduces entropy for some rock, that sample will be preferred when standing over
a promising rock, and that otherwise movement actions will be considered.

We compared three different policies: uniformly random with legal moves
(“legal” in POMCP), explicit preferred actions (“smart” in POMCP) and our
own, “PGS”. Figure 4 shows the discounted rewards averaged over 1000 runs
for all three policies in rocksample [11, 11], [15, 15], and the large [25, 25] and
[25, 12], with up to 2048 Monte-Carlo simulations per move.

PGS clearly outperforms the legal policy and is only slightly outmatched
by the smart policy. This difference however reduces as the problem size in-
creases, particularly in [25, 25], a very large problem for rocksample standards
and in [25, 12], an equally large grid but with fewer reward sources. Estimating
the PGS value of derived states for every action in our rollout policy may be
somewhat computationally expensive, particularly when all or many actions are
available, since it trades off simulations for runtime. Results show, however, this
pays off compared to the random policy: with ≈ 2.5 seconds of computation in
rocksample[25, 12], the legal rollout policy achieves a discounted reward of 5.713
with 2048 simulations, whereas PGS collects 7.35 with only 128 simulations. A
faster implementation for planning onboard robots might be necessary, but also
a shallower planning depth may be used (the experiments used a depth of 90
steps).

5.3 Cellar

We will now present the Cellar domain, devised as a series of POMDP’s that
more closely model robot task-planning under uncertainty. Problems commonly
used in planning, including Rocksample, suffer from several oversimplifications:
they represent only the elements or features that are directly relevant to the goal,
and make unrealistic assumptions about the cost of actions such of moving and
scanning or checking. While Rocksample succeeds at representing the goals of
planning, it does not represent important challenges: in the “real world”, a robot
finds and interacts with many different objects, it has many possible actions
and it receives many different observations. From these only a few are actually
relevant to achieve the goal, and the rest are obstacles that must nonetheless be
addressed one way or another while planning.

In this problem, clearly inspired by Rocksample, the agent must navigate
a wine cellar and collect at least one valuable bottle, while it encounters ob-
jects such as shelves and crates that may or may not help to reach the goal.
Cellar[n, k, s, c] defines an n × n grid, with k bottles, s shelves and c crates.

100 101 102 103

0

5

10

15

20

Simulations

A
v
g
.

D
is

co
u
n
te

d
R

ew
a
rd

Legal

Smart

PGS

(a) [11,11]

100 101 102 103

0

5

10

15

Simulations

A
v
g
.

D
is

co
u
n
te

d
R

ew
a
rd

Legal

Smart

PGS

(b) [15,15]

100 101 102 103

0

5

10

15

Simulations

A
v
g
.

D
is

co
u
n
te

d
R

ew
a
rd

Legal

Smart

PGS

(c) [25,25]

100 101 102 103

0

5

10

15

Simulations

A
v
g
.

D
is

co
u
n
te

d
R

ew
a
rd

Legal

Smart

PGS

(d) [25,12]

Fig. 4: Performance in Rocksample

Crates can be pushed in the direction of any free grid cell (i.e. no bottles or
objects), but attempting to push anything else is (more heavily) punished. A
check action is always available for any object and any bottle, and the agent
may move in four possible directions (North, West, South, East) resulting in a
total of 9+k+s+c actions. For simplicity, each bottle can be either good or bad
and each object can be either a crate or a shelf, resulting in 4 total observations
but each pair exclusive to their object class. Initially the agent knows the loca-
tion of the bottles and of the objects, the bottles have equal probability of being
good or bad and the objects equal probability of being a crate or a shelf. The
sensor efficiency and the derived check actions work exactly like in Rocksample.

We designed special layouts for two cases of interest: Cellar[7,8,7,8] and Cel-
lar[11,11,15,15]. The first is a POMDP with 32 actions and 2 × 2 observations
resulting in a state space of more than 1015 states. The second problem defines

a POMDP with 50 actions, 2× 2 observations, and a seriously large state space:
approximately 1031. In comparison, Rocksample[11,11] has 247, 808 states and
Rocksample[25,25], approximately 1010 states. The larger Cellar problem is il-
lustrated in fig. 5, where the tall rectangles represent shelves, the short squares
represent crates, and the bottles are shown in dark red.

Fig. 5: Layout of Cellar[11, 11, 15, 15]

The reward distribution for the Cellar problem is +10 for collecting a good
bottle, -10 for collecting a bad bottle, +10 for the terminal state (leaving the grid
to the East with at least one good bottle), −0.5 for checking, -1 per movement
step, -2 for pushing crates and -10 for pushing anything else. This distribution
reflects our attempts to better capture robot planning, where no action is truly
free and some actions (such as pushing) can be relatively expensive even if they
are necessary. Additionally, rewards implicitly relate to the goal and in domains
as complex as this one, time restrictions with free actions can lead to undesir-
able (yet rational) behavior such as spending the allotted time performing only
check actions and not moving or sampling, thus minimizing the loss in the total
cumulative reward but not actually reaching a terminal state. This type of be-
havior may result in very poor policies with deceivingly acceptable performance
(not much reward loss), a detail lost when presenting only average performance
tables.

PGS scoring in Cellar is equivalent to its Rocksample counterpart: collecting
valuable or non-valuable bottles yields its respective fully-observable points, and
uncertainty about bottles yields equivalent punishments. Uncertainty about ob-
jects such as shelves and crates should not be punished however, because they
do not form part of the goal. Rewarding (or lifting the punishment) for check-
ing objects encourages the agent to acquire potentially unnecessary knowledge
and to execute many, relatively expensive actions. An interesting challenge, to be

addressed in future work, is deciding when to gather information about surround-
ing objects. That is, identifying which non goal-related, information-gathering
actions actually contribute to increasing the total reward.

Unlike in Rocksample, however, during rollouts we consider only movement,
sampling, pushing and uncertainty-reducing checks, meaning we don’t check ob-
jects that already meet the entropy requirements. We adapted the preferred
actions in the “Smart” Rocksample policy (included with POMCP) so that the
same movement, checking and sampling heuristics apply, and added equivalent
heuristics for object checking. Likewise, “Legal” refers to the uniformly random
policy that considers all valid actions (eg. not leaving the grid).

In order to stress the importance of quickly doing the right thing, let us first
consider a minimal version of this problem, cellar[5,1,0,4], where four crates sur-
round a single, valuable bottle (fig. 6). This relatively straightforward POMDP
has a very clear, recognizable goal, and yet it has around 6 million states. Agents
solving this problem should quickly realize they must push a crate, collect the
bottle and leave, trying not to move around aimlessly or unnecessarily checking
and pushing.

Fig. 6: Minimal Cellar example

Figure 7 shows the performance of all three policies in the minimal version of
the Cellar domain. The total discounted return was averaged over 100 runs with
up to 2048 Monte-Carlo simulations per step and discount γ = 0.99, t. In this
problem, after 128 simulations PGS dramatically outperformed the two other
action selection policies. Out of the 100 runs, PGS reached the terminal state
in 97 of them with only 512 simulations, and with 1024 simulations or more, 99
runs reached the terminal state. Non-terminal runs ended when the agent spent
its allotted acting budget, set to a generous 100 steps. The heuristic policy was
capable of terminating a maximum of 64 times, whereas the random policy a
maximum of only 37 despite having a similar mean discounted reward. In this
configuration the low bar set by the terminal state is actually informative given
that there is exactly one bottle to collect.

The comparative performance of PGS in the larger Cellar problems is shown
in figure 8, averaged over 100 runs with up to 8192 Monte-Carlo simulations per
move, with a large acting budget of 500 steps. In cellar[7,8,7,8] we used a discount

100 101 102 103

−60

−40

−20

0

Simulations

A
v
g
.

D
is

co
u
n
te

d
R

ew
a
rd

Legal

Smart

PGS

Fig. 7: Performance in cellar[5,1,0,4]

factor of γ = 0.99, but chose a discount factor of γ = 0.95 in cellar[11,11,15,15]
in order to make the problem slightly more manageable by reducing the search
horizon (which also results in a different range of rewards).

100 101 102 103 104

−100

−80

−60

−40

−20

Simulations

A
v
g
.

D
is

co
u
n
te

d
R

ew
a
rd

Legal

Smart

PGS

(a) [7,8,7,8]

100 101 102 103 104

−14

−12

−10

−8

−6

−4

Simulations

A
v
g
.

D
is

co
u
n
te

d
R

ew
a
rd

Legal

Smart

PGS

(b) [11,11,15,15]

Fig. 8: Performance in the Cellar domain

These results in the full Cellar problems show how PGS scaled in very large,
task-planning POMDP’s. In the first case (fig. 8a) with very few simulations
PGS already performed slightly better than two other policies, and with more
simulations it clearly outperformed the random and the heuristic policies by a
fair margin. Interestingly, PGS was also faster than Smart: in less than half the

time, it gathered more discounted reward and achieved a much higher terminal
state count.

In the second case (fig. 8b), PGS improved upon the overall performance
achieved by the random policy and, with very few simulations, achieved com-
paratively better performance than both competing policies. However, due to the
extremely large state-space and branching factor of this POMDP, it didn’t scale
as well as the manually designed, heuristic policy. The Legal policy, on the other
hand, quickly settled on a low, local maximum performance possibly limited by
its uninformed, uniformly random sampling. It must be noted that due to the
size of the second problem there’s little difference in the total discounted reward
across the three policies, up to the maximum amount of simulations used, which
suggests we might essentially be looking at the beginning of the plot. Perhaps
if significantly more simulations were used, sizable differences in performance
would appear, but that amount of computational resources and response times
are already outside the scope of online planning.

In order to transfer these methods to robots we must focus on quickly achiev-
ing a significant increase in performance, since we’re attempting to minimize re-
sponse time (and computing resources). This type of reasonably satisfactory be-
havior with relatively few simulations is precisely what should be expected from
a more informed action-selection policy. Efficiently solving large task-planning
problems, such as cellar[11,11,15,15] and beyond, requires more than “just” bet-
ter action selection. For the purpose of this paper, the Cellar domain allowed us
to measure the scalability of our goal-driven bias in very complex scenarios, but
it will be used again in the future in the context of managing state complexity.

6 Conclusions & discussion

Our experimental results show that despite its simplicity, PGS effectively im-
proves the performance of planning in large (PO)MDP’s, thanks to its goal-
driven approach to action selection. In the fully observable problem (Taxi do-
main), PGS achieved a level of performance far out of reach for a uniformly
random policy in standard UCT.

In domains with partial and mixed observability and particularly in problems
with scarce reward sources, such as larger versions of Rocksample, PGS easily
outperformed the uniformly random policy and closely followed a manually de-
signed, heuristic policy. In such problems, the random policy scaled poorly and
domain knowledge became necessary to achieve good performance quickly. We
showed, however, that with barely any domain-dependent knowledge, PGS can
be competitive with a manually designed action-selection policy even if it relies
on detailed, heuristic knowledge. This type of domain-independent bias is essen-
tial for planning and acting in complex domains, and estimating the information
gain of uncertainty-reducing actions may be necessary to correctly address large
robotic planning domains, avoiding less useful choices.

The second partially observable domain, Cellar, showed the performance of
a goal-driven bias in action selection when planning in very large domains with

obstacles, unnecessary actions and a more realistic reward distribution. The
minimalistic version of this domain underlines the importance of quickly iden-
tifying reward sources and choosing actions that lead to them, which both the
uniform and heuristic policies failed to do. The larger problems constitute a
much more complicated optimization challenge that nonetheless benefits from
goal-oriented behavior, as shown by the performance of PGS in cellar[7,8,7,8]. As
mentioned in the previous section, the largest of these problems requires more re-
fined mechanisms that directly address the state complexity. In principle for any
given planning problem it is possible to design a detailed and extremely efficient
heuristic rollout policy using domain knowledge, in the spirit of “Smart”, and
it should perform and scale relatively well. However general-purpose planning
under uncertainty, especially onboard robots, cannot rely on manually designed,
domain-dependent heuristics. When solving practical, well-understood problems
in controlled scenarios, the combination of both domain-knowledge and goal-
driven action selection might produce very promising results.

In general we can identify three main approaches for speeding up planning
in large stochastic domains: 1) Action hierarchies that produce smaller, abstract
MDP’s and then transfer these solutions to the base MDP. 2) State abstractions
that group states together so their values are shared and the values of unknown
states, approximated. 3) PBRS, that forces an agent to focus on good action
prospects, avoiding potentially costly choices. Current techniques for both ac-
tion and state abstraction rely on fixed criteria that might cause a planner to
traverse many unique states anyway, which is the challenge addressed by PGS.
We attempt to quickly identify reward sources and back propagate scaled partial
rewards, using as little domain knowledge as possible but exploiting an agent’s
knowledge of its own goals.

As previously stated, this work is only part of our efforts to introduce the no-
tion of relevance in task planning. Future work includes designing dynamic value
approximation and/or state aggregation methods derived from this methodol-
ogy, as well as limiting the amount of reachable states to those that directly
contribute to the goal. In order to transfer these methods to real-world robotic
tasks, it will also be necessary to map continuous to discrete state representa-
tion. We argue that similar to PGS, dimensionality reduction techniques should
consider criteria derived from the goal (something that, as far as we know, hasn’t
been tried yet).

In order to obtain the results presented in this paper we experimented exten-
sively on the three domains, using different parameters and observing different
types of behavior when such parameters were modified. It is very well known
that UCT is sensitive to certain important variables, such as the number of sim-
ulations per step, the search horizon or discount factor, and the exploration rate
in UCB1 action selection. The really significant leap in performance for any kind
of planning agent (human, program or robot) however, comes from an appro-
priate modeling or understanding of the domain, including available actions and
goals. In problems such as cellar[5,1,0,4] we can as humans intuitively under-
stand, very quickly, what needs to be done and promptly suggest a sufficiently

good plan (maybe even optimal), despite the almost 6 million possible states and
the much, much larger belief space. Similar problems in larger grids (eg. imagine
cellar[50,1,0,4]) have exponentially larger state and belief spaces (approximately
1017 states) and yet the problem structure is essentially the same. The agent
must “simply” focus on a few good states and actions, and avoid the rest (large
empty grids can in fact be simplified with state aggregation and action hierar-
chies). It seems, then, that efficient planning requires more than just evaluating
many reachable states and beliefs.

Often the perceived complexity of planning problems is justified based on
their worst-case computational complexity, which is a direct function of the
number of states. Planning problems however are defined not only in terms of
their transition dynamics, but also in terms of some implicit or explicit goal,
so the intrinsic relationship between the values of states and their proximity
to the goal (or subgoals) must be considered. An efficient planning algorithm
should quickly identify the gaps in the different state values, in order to separate
good states from bad states, and focus on the good ones. These values come
uniquely from perceived (or simulated) rewards. Because the value of a state is
the average discounted return of its children, it might be difficult to differentiate
promising states from less promising ones early on, when the agent is simply
too far (in terms of state or belief transitions) from any source of reward and
doesn’t have enough knowledge or statistics to decide. However, if an agent finds
itself initially “close” to its goal or a reward source (eg. a few actions away), the
problem should be simple to address or even solve if the appropriate actions are
chosen, regardless of the number of reachable states and beliefs.

We designed PGS, a simple and straightforward action selection bias, as
an attempt to exploit these observations. Experimental results indicate that it
performs and scales well even in large domains, and underline the importance
of goal-oriented behavior. We expect this type of relevance-driven methodology
to improve the performance of online planning under uncertainty in robots and
similar agents, that must quickly act with only limited information despite the
complexity of “real-world” problems.

Acknowledgements

We would like to thank our colleagues Sebastian Pütz and Felix Igelbrink for
their suggested reward distribution in the Cellar domain, and the DAAD for
supporting this work with a research grant.

References

1. Kocsis, L., Szepesvári, C.: Bandit based monte-carlo planning. In: In: ECML-06.
Number 4212 in LNCS, Springer (2006) 282–293

2. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed
bandit problem. Machine Learning 47(2) (2002) 235–256

3. Silver, D., Veness, J.: Monte-Carlo Planning in Large POMDPs. In: In Advances
in Neural Information Processing Systems 23. (2010) 2164–2172

4. Saboŕıo, J.C., Hertzberg, J.: Towards Domain-independent Biases for Action Selec-
tion in Robotic Task-planning under Uncertainty. In: Proceedings of the 10th In-
ternational Conference on Agents and Artificial Intelligence - Volume 2: ICAART,
INSTICC, SciTePress (2018) 85–93

5. Smallwood, R.D., Sondik, E.J.: The optimal control of partially observable markov
processes over a finite horizon. Operations Research 21(5) (1973) 1071–1088

6. Cassandra, A.R., Kaelbling, L.P., Littman, M.L.: Acting optimally in partially
observable stochastic domains. In: Proceedings of the 12th National Conference
on Artificial Intelligence, Seattle, WA, USA, July 31 - August 4, 1994, Volume 2.
(1994) 1023–1028

7. Cassandra, A.R., Littman, M.L., Zhang, N.L.: Incremental pruning: A simple,
fast, exact method for partially observable markov decision processes. In: UAI ’97:
Proceedings of the Thirteenth Conference on Uncertainty in Artificial Intelligence,
Brown University, Providence, Rhode Island, USA, August 1-3, 1997. (1997) 54–61

8. Smith, T., Simmons, R.: Heuristic Search Value Iteration for POMDPs. In: Pro-
ceedings of the 20th Conference on Uncertainty in Artificial Intelligence. UAI ’04,
Arlington, Virginia, United States, AUAI Press (2004) 520–527

9. Pineau, J., Gordon, G.J., Thrun, S.: Anytime point-based approximations for large
POMDPs. Journal of Artificial Intelligence Research 27 (2006) 335–380

10. Kurniawati, H., Hsu, D., Lee, W.S.: SARSOP: efficient point-based POMDP plan-
ning by approximating optimally reachable belief spaces. In: Robotics: Science
and Systems IV, Eidgenössische Technische Hochschule Zürich, Zurich, Switzer-
land, June 25-28, 2008. (2008)

11. Ong, S.C.W., Png, S.W., Hsu, D., Lee, W.S.: Planning under uncertainty for
robotic tasks with mixed observability. Int. J. Rob. Res. 29(8) (July 2010) 1053–
1068

12. Somani, A., Ye, N., Hsu, D., Lee, W.S.: Despot: Online pomdp planning with
regularization. In Burges, C.J.C., Bottou, L., Welling, M., Ghahramani, Z., Wein-
berger, K.Q., eds.: Advances in Neural Information Processing Systems 26. Curran
Associates, Inc. (2013) 1772–1780

13. Pineau, J., Gordon, G., Thrun, S.: Policy-contingent abstraction for robust robot
control. In: Proceedings of the Nineteenth Conference on Uncertainty in Artificial
Intelligence. UAI’03, San Francisco, CA, USA, Morgan Kaufmann Publishers Inc.
(2003) 477–484

14. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. 2nd edn.
MIT Press, Cambridge, MA, USA (2012) (to be published).

15. Hester, T., Stone, P.: TEXPLORE: Real-time sample-efficient reinforcement learn-
ing for robots. Machine Learning 90(3) (2013)

16. Sutton, R., Precup, D., Singh, S.: Between mdps and semi-mdps: A framework for
temporal abstraction in reinforcement learning. Artificial Intelligence 112 (1999)
181–211

17. Dietterich, T.G.: Hierarchical reinforcement learning with the maxq value function
decomposition. Journal of Artificial Intelligence Research 13 (2000) 227–303

18. Konidaris, G.: Constructing abstraction hierarchies using a skill-symbol loop. In:
Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intel-
ligence, IJCAI 2016, New York, NY, USA, 9-15 July 2016. (2016) 1648–1654

19. Ng, A.Y., Harada, D., Russell, S.: Policy invariance under reward transformations:
Theory and application to reward shaping. In: In Proceedings of the Sixteenth

International Conference on Machine Learning, Morgan Kaufmann (1999) 278–
287

20. Eck, A., Soh, L.K., Devlin, S., Kudenko, D.: Potential-based reward shaping for
finite horizon online pomdp planning. Autonomous Agents and Multi-Agent Sys-
tems 30(3) (May 2016) 403–445

