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Abstract: Hyperspectral imaging has been extensively studied in remote sensing. In this
community, several approaches exist for classifying different organic and an-organic materials.
However, this data is usually collected from large distances (flight or satellite data) and hence
lacks geometric precision, which is required for robotic applications like mapping and navigation.
In this paper, we present a reference data set that maps hyperspectral intensity data to a
terrestrial 3D laser scanner to generate what we call hyperspectral point clouds (HPCs). To
organize and distribute the resulting massive data, we designed an HDF5 file structure that is
the basis to feed information derived from the raw data into robot control frameworks like ROS.
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1. INTRODUCTION

Over recent years, the rapid development of laser scanning
technology has allowed to generate highly precise 3D
models of large scale environments. Via co-calibration of
different kinds of cameras, additional modalities can be
added to the measured distance and reflectivity values.
Adding color information from RGB cameras is state-
of-the-art in commercial laser scanners. Adding other
information than color is seldom seen but desirable to ease
typical problems like segmentation and classification. One
example is the addition of infrared data to detect thermal
leaks (Borrmann et al., 2016).

In contrast to these thermal cameras, which capture only a
narrow part of the electromagnetic spectrum, hyperspec-
tral cameras allow to capture intensity information over
several hundreds of narrow wavelength intervals. The anal-
ysis of such hyperspectral distributions for classification is
a well-known technique in geo sciences and remote sensing.
However, freely available data from remote sensing has a
poor spatial resolution, which makes this data more or
less useless for robotic applications, where a high local
resolution is necessary to safely operate a robot.

In this paper, we close this gap by presenting a freely
available reference data set of high resolution 3D point
clouds, where each 3D point carries a spectral intensity
distribution over 150 spectral channels. With this work,
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we initiate a basis for identifying new methods for typical
problems that are hard to solve by relying on RGB in-
formation alone. One obvious example is the classification
of vegetation to distinguish between crops and weed in
precision farming, where both classes of objects are more
or less green in RGB images. Other possible applications
include classification between materials in urban areas
(concrete, asphalt, stones) to distinguish between roads
and sidewalks or assessing building damages by analyzing
the integrity of, e.g., walls. Our data set was collected in
the Botanical Garden at the University of Osnabrück. The
garden is located in a former stone quarry and therefore
features a large number of different materials from the
aforementioned application domains in a relatively small
area and is, therefore, an excellent environment to generate
a reference data set of hyperspectral point clouds.

In the remainder of this paper, we present our measure-
ment systems and characteristics of the collected data as
well as a proposal to organize and distribute the huge
amount of data that arises when dealing with such high
resolution spectral data. We present reference images in
different spectral channels and a preliminary application in
segmentation, where we computed the well-known NDVI
index to recognize vegetation in the collected reference
data. All collected data is stored in a HDF5 file structure
that can be accessed with a number of open source libraries
and software packages. The presented reference data set
and our open source processing software “Las Vegas Sur-
face Reconstruction Toolkit” are available on the project’s
website 1 .

1 www.las-vegas.uni-osnabrueck.de



2. RELATED WORK

Most work that describes the use of 3D hyperspectral point
cloud data is based on image data collected by UAVs.
Although the calibration of hyperspectral cameras against
3D point clouds generated from UAVs is technically feasi-
ble, the actual generation of 3D point clouds with hyper-
spectral annotations is seldom seen. In Nevalainen et al.
(2017), photogrammetically generated point clouds were
fused with hyperspectral images from an UAV for tree clas-
sification. Similar results were shown in Näsi et al. (2015).
However, the reported point density in these studies is rel-
atively low with about 500 points per square meters with
significant noise in the range of several centimeters. Using
terrestrial laser scanners, point density can be increased
by several orders of magnitude, while reducing the noise
level to millimeters.

Fusing point clouds from terrestrial scanners and color
data from RGB camera images is state of the art in
commercial systems. The most common solution to com-
pute the extrinsic calibration is to use specific reference
patterns with detectable feature points in both domains,
e.g., a checkerboard (Zhang and Pless, 2004; Buckley et al.,
2013). This idea was extended to thermal camera data
in Borrmann et al. (2016). In Nieto et al. (2010), a cali-
brated RGB camera on top of a laser scanner is used to cre-
ate an RGB-colored point cloud, which is registered to the
hyperspectral image using SIFT features and a piecewise
linear transformation. However, this approach requires
an additional camera for calibration. In Buckley et al.
(2013), a terrestrial laser scanner was calibrated against
a laser scanner to generate hyperspectral point clouds. In
contrast to our system, an external hyperspectral camera
was used, presumably resulting in a large parallax error in
near range. Furthermore, the approach required manually
placed markers for registration. In our setup, we used a
hyperspectral line camera that was mounted on top of the
laser scanner and rotated with it during scanning. To regis-
ter point cloud and camera data, we used a similar camera
model as in Buckley et al. (2013), but implemented a GPU-
based mutual information optimization method to allow
for markerless and featureless ad-hoc calibration (Igelbrink
et al., 2018).

In the last years, several different data formats have
become popular that allow for efficient storage and fast
access of large amounts of block-shaped data coupled
together with attached metadata. Those formats include,
but are not limited, to the ROOT (Antcheva et al., 2011)
and HDF5- Formats (Folk et al., 1999), which are among
the most widely supported and mature. For this data set,
we decided to use HDF5 for storing our multi-modal data
(laser scanner, RGB camera, hyperspectral camera, pose
information, and more) in a single file per data set.

3. GENERATING AND STORING
HYPERSPRECTRAL POINT CLOUDS

In this section we present the mobile mapping system that
was used for generating hyperspectral point clouds, as well
as the HDF5 file structure for storing the data from the
different sensors.

Fig. 1. The Pluto robot with Riegl VZ400i laser scanner
and Resonon Pika L hyperspectral camera in the
Botanical Garden at the University of Osnabrück.

3.1 System Setup

We installed our hyperspectral scanning system on the
mobile robot Pluto that is based on the VolksBot XT plat-
form. It features a Riegl VZ400i high resolution 3D laser
scanner and a Resonon Pika L hyperspectral line camera,
mounted on top of the rotating laser scanner. The camera
records up to 297 independent spectral channels between
400 nm 1000 nm, which are accumulated to a hyperspec-
tral panorama image, while the scanner is rotating and
recording the point cloud data. In addition, we installed a
regular RGB camera on the scanner system to capture high
resolution images. For precise pose estimation, the robot is
equipped with 3 IMU units and a differential GPS sensor.
The robot with laser scanner and hyperspectral camera is
shown in Fig. 1.

3.2 Data Acquisition

The data was collected in a stop-and-go fashion: The robot
was manually steered to a desired scanning position. Here,
we took a 360◦ laser scan and simultaneously recorded
the hyperspectral data. After each scan, we switched the
Resonon camera with a Nikon D610 camera to capture
RGB images. This manual switching had to be done due
to spatial restrictions. Since switching the sensors resulted
in small but noticeable changes in the extrinsic orientation
of the sensors, we had to re-calibrate the system every
time we switched the cameras. Since our hyperspectral
calibration procedure (Igelbrink et al., 2018) requires no
external features and the calibration of the RGB camera
can be easily re-adjusted after scanning using the software
provided by the scanner manufacturer, the switching did
not significantly affect the quality of the final data set.

The data collected by the sensors were stored into ded-
icated directories of the on-board computer. This kind
of data organization has several drawbacks. Fist, this
implementation is generating many files. For hyperspec-
tral registration, we need to fuse the single lines of the
Resonon camera into a consistent panorama image. Since
the reference driver does not provide time-stamped data
and does not deliver data at a fixed frame rate, we need
to save all received frames and fuse them according to
the average rotation speed of the laser scanner to generate
consistent panorama images for re-projection of the points.
Currently, we save each frame into a time-stamped file. In
the generation process, frames are duplicated or dropped



depending on the rotation speed of the laser scanner, which
we currently do offline after a scan was collected. Similarly,
we have to store all RGB images and pose information.

Our initial idea was to use ROS bags as a container for
all data, but practically it showed that the hyperspectral
data alone blew the 1GB default limit of ROS bags. In-
creasing this size resulted in other side effects like missing
frames that lead us to the current solution. Distributing
the data in a file system structure is generally not de-
sirable. Compressing the data in a Zip file would solve
the problem of scattered data, but uncompressing only
parts is ineffective. From our point of view, HDF5 files
overcome these drawbacks. Hence, we have implemented
an HDF5 structure that fits the requirements for our data
set. We implemented an interface that is compatible with
common exchange formats and puts the data into the
proposed structured within the HDF5 file. This structure
is presented in the next section.

3.3 Data Storage and Structure

The HDF5 file format has several advantages over using di-
rectory structures. An HDF5 file has an internal structure
similar to a file system consisting of groups (directories)
and data sets (files), allowing for flexible hierarchical stor-
age of data. Additionally, the format supports attaching
metadata to each object. This makes it easy to store
data of different modalities in a self-explaining format, as
required for our data sets. More so, it allows for keeping
related data closely together, e.g., the metadata related
to a data set is attached directly to it, rather than being
kept in a separate file. The HDF5 format is very flexible
regarding data storage, access and memory layout. As an
alternative to storing a data set as a single continuous
block of memory, a chunked layout, where a data set is
split into several, equally sized, chunks, which are stored
separately in the file, is available. This significantly im-
proves i/o performance while working on subsets of the
data, because not all data has to be loaded into memory.
Storing the data in a chunked layout allows for additional
compression of a data set with multiple available algo-
rithms. The different memory layouts and the compression
can be freely mixed within one file, which allows for great
flexibility.

The reference implementation of HDF5 is developed by the
HDF5-Foundation in the C programming language. Bind-
ings into nearly all popular programming languages are
available. This makes it easy to switch between languages
in a clean manner and using, e.g., Python for exploration
and analysis, and C++ for fast processing of the same
files without having to rely on multiple different libraries
to parse and load a complex directory structure.

Data Organization in HDF5 Fig. 2 presents the general
structure to organize our spectral and point cloud data.
All collected sensor data is organized in a collection called
raw. It contains meta information of where and when the
data was acquired. The data collected by the individual
sensors of the system is stored separately for each scanning
position in sub-collections referring to the different sensors.
For laser scan data, we store the initial pose estimation,
the final registration in the global reference frame, field
of view and angular resolution, the axis aligned bounding

(a) Scan Data (b) Spectral Data (c) Annotations

Fig. 2. Proposed organization of captured data in HDF5.

box as well as the single points in a sub-collection called
scans.

The corresponding spectral data is stored in the spectral
sub-collection. It contains the raw spectral panorama
images and the calibration parameters for the cylindrical
calibration model. The spectral data is organized in an
image cuboid where each layer refers to an intensity image
of a spectral channel. Information about the mapping
of layers to spectral channels in encoded in the meta
attributes of this spectral data set. Similarly, we store
the acquired RGB images in a sub-collection images for
each position.

Besides the raw data that comes from the system, we
store derived data from the original data in an additional
group called annotations. Here, we store the annotated
point clouds with hyperspectral data directly as an array
of consisting of 150 unsigned characters per point as well
as RGB data in a separate array.

In addition to annotated point clouds, the user can store all
other representations in specific groups and data sets that
can be derived from the raw data. This can also include
spatial indices like octrees and kd-trees that represent the
stored point clouds. Our intention here is to allow the
user to keep all information that was derived from the
original data closely together with the original data. The
representations stored in these additional sections are not
limited to structures related to point cloud data. It may
also include meshes with textures computed from the raw
data like the ones presented in Wiemann et al. (2018).

In future work, we intend to store there map rep-
resentations that can be used in robotic frameworks.
Current ideas are Octomaps (Hornung et al., 2013),
GridMaps (Kohlbrecher et al., 2011) or polygonal navi-
gation maps (Pütz et al., 2016). The idea is to use the
HDF5 data format as the basic storage for all static data
about an environment and the can be re-used for differ-
ent applications. The aim is to reduce the scattering of
processed data from the original raw data that usually
happens over time, when a data set is used for different
experiments and application scenarios. We see this kind of
organization within the HDF5 files as a persistence layer
on file servers or other long term data storage. To make
the data accessible in robotic contexts, an API layer and
interface nodes to the used robot control architecture have
to be implemented.



Fig. 3. Components to make high resolution data available
for robotic applications.

The desired interaction between static storage and robot
control architectures is sketched in Fig. 3. We mainly
distinguish between a persistence layer, where all high
resolution data is stored on a dedicated file storage with
high bandwidth and high capacity. The raw and derived
data are stored in the HDF5 file. The computations to gen-
erate the derived data are done by pre-processing modules
that add new representations to the HDF5 file base. This
includes map generation, scan registration, computation
of the annotated point clouds, filtering, computation of
indices, and generally all computations that are done on
static environment data.

To make the computed information available, interface
nodes need to be implemented that access the file base
and generate representations that can be used in different
applications. For example, stored grid maps from the
HDF5 files could be converted to ROS messages and then
published via an existing ROS master. Another possible
application is feeding of static information into semantic
mapping applications like our SEMAP framework (Deeken
et al., 2018) for qualitative spatial reasoning about the
environment. The interface nodes could also be used to
send relevant data on-demand, since a robot usually does
not need to keep all information about an environment in
working memory, but only the information that is needed
the current task, e.g., the navigation map of a certain area.

Currently, we have implemented interface nodes to ROS
that allow to query polygonal meshes and cost maps from
such an HDF5 file that are used for local navigation. This
so called Mesh Map Server is able to perform several
range queries like and deliver it in form of dedicated ROS
messages. For this kind of interaction between persistence
layer and application it is important that the relevant data
can be extracted without high latencies from the data
storage. Hence, we have evaluated to performance of HDF5
files for our application.

4. THE BOTANICAL GARDEN DATA SET

In this section we describe the main features of the
generated reference data set. It consists of 16 hyperspectral
laser scans and covers an area of approximates 70× 75,m.
An aerial photo of the scanned area and the rough layout of
the scan positions and covered area is shown in Fig. 4. Each
3D laser scan was taken with a field of view of 360 × 100◦

with an horizontal and vertical angular resolution of 0.05◦,
resulting in approximately 70 million points per scan. For
each scan position, we collected the full spectral data in

Fig. 4. Aerial view of a part of the Botanical Garden
at the University of Osnabrück with an indication
of the scanned area (Image provided by the City of
Osnabrück, geo.osnabrueck.de).

150 buckets between 400 nm and 1000 nm. Additionally,
we took 5 24 megapixel RGB images per scan for RGB
annotation. The total amount of collected raw data sums
up to 45 GB for this relatively small area. The single
scans were automatically registered based on the GPS pose
estimations provided by the Riegl laser scanner and the
robots odometry using slam6d 2 .

Fig. 5 shows exemplary 3D views on the data set with
different modalities. The top row shows renderings of
the same scenes with annotated spectral intensities at
wavelengths of 400, 600 and 800 nm respectively. For
rendering, the measured intensities were normalized and
mapped to an blue to red color gradient, visualizing the
different intensity distributions at different wavelengths.
The pictures in the bottom row show overview renderings
of the whole data set with RGB annotation (left) and
mapped NDVI values. Human-made an-organic structures
like pathways are clearly distinguishable in this representa-
tion. We added this picture to demonstrate the potential of
the combination of hyperspectral and spatial information
for robotic applications. Especially for semantic classifi-
cation the use of such sensor combinations seem to be ex-
tremely beneficial, especially in combination with methods
from remote sensing, where classification of hyperspectral
images is an established discipline.

Note, that the spectral intensities of the different scans
have not been normalized yet. This task would require
a reference spectrum. Due to the rotating camera in our
setup, acquiring such a spectrum is difficult, since it is only
valid for small variations of the camera’s field of view. We
plan to resolve this issue in future work.

5. HDF STORAGE PERFORMANCE

So far, we presented the organization and features of the
collected data. In this section we analyze the benefits of
using HDF5 files for such data in terms of data compres-
sion and access speed. All experiments were performed on
an Intel Core i7-4930K processor with 6 physical cores and
32 GB RAM. For accessing HDF5 files, we used libhdf5 in
version 1.10.

2 www.slam6d.sourceforge.net



Fig. 5. Visualizations of the Botanical Garden data set. The top row shows renderings of the spectral intensities at
400 mn (left), 600 nm (middle) and 800 nm (right). The lower row shows an overview of the whole data set with
RGB annotations (left) and normalized NDVI values (right); the gravel pathways clearly stick out in the NDVI
representation.

Table 1. Maximum compression rates and HDF5 file
generation times for different storage modes.

Method File size Generation Time

No compression 39.1 GB 27:26 min
1 channel image aligned 21.3 GB 47:26 min
5 channel image aligned 21.3 GB 47:30 min
Chunked 50 21.0 GB 49:56 min

In a first experiment, we evaluated the resulting file sizes
using different compression methods available in libhdf5.
The maximum achievable compression rates and average
file creation times for different compression methods are
shown in Tab. 1.

The first row shows the stats without compression enabled.
With compression enabled, the HDF5 library splits the
data into chunks which are organized in a binary search
tree. The size of the chunks has an significant impact on
the achievable compression ratios and influences the file
generation time. When experimenting with the data, we
found that the chunking of the float arrays of the point
cloud data did initially not effect the file size noticeably,
probably due to the encoding of floating point values.
However, the chunking of the hyperspectral data proved to
deliver higher compression rates. Therefore, we evaluated
different chunk sizes as displayed in the remainder of
Tab. 1.

First, we stored one chunk per hyperspectral channel in
the panorama images (“1 channel image aligned”) as well
as chunks consisting of 5 adjacent hyperspectral channels
(“5 channel image aligned”). This reduced the initial
file size, but showed no measurable differences between
1 or 5 channeled data access. However, creating chunks
of 50 elements over all dimensions in the image cuboid
(“Chunked 50”) reduced the file size further at cost of
higher generation time. To find out how this kind of
chunking effected the files, we varied the chunks sizes from
10 to 1000 as displayed in Fig. 6. Here, a minimum at the
tested chunk size of 50 is clearly visible with the default
compression enabled.

In addition, we activated the data shuffle algorithm im-
plemented in the HDF5 library. Here, the file size initially
increased. To test our hypotheses that the internal float-
ing point representation prevents further compression, we
converted the scan data to integer values by converting
from meter values to rounded units of 0.1 millimeters,
which is well below the distance accuracy of the laser scan-
ner. In this integer representation, the compression ratio
increased, but combining the integer representation with
shuffling in the end lead to very high compression rates. In
this representation, we were able to achieve compression
rates of about 64% compared to the initial raw data.

To evaluate the time to access our data stored in HDF5
files we benchmarked the time needed to load a single
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Table 2. Comparison of creation and access times for a
single scan position.

Representation Creation Time Access Time Size

Directory n/a 52 s 2.1 GB
gzip 4:33 min 68 s 1.5 GB
HDF5 4:41 min 32 s 1.6 GB

scan position from a HDF5 file and compared it to direct
loading of raw data from a directory and a gzip-compressed
directory. For the gzip comparison, we extracted the com-
pressed data to a separate directory and loaded the ex-
tracted raw data. The results of these experiments are
shown in Tab. 2. As expected, the access time for gziped
data is significantly slower than direct data access. Sur-
prisingly, the HDF5 access is about 45% faster than direct
reading of the individual files. The high HDF5 reading
performance can be explained with the internal chunking
which is optimized for fast data access. In directory access
we store the singe hyperspectral channel images in PNG
files, which may produce reading overhead. Generally, this
evaluation proves that the use of HDF5 files is a good
choice for permanent storage and fast access. The most
significant drawback here is the comparatively long time
that is needed to generate the HDF5 files from the initial
directory representation of the raw data.

6. CONCLUSION

In this paper we presented a reference data set consisting
of 16 hyperspectral laser scans. In addition, we presented
a HDF5 based organization of the acquired information
that allows for compact storage and fast access to recorded
data, as shown in the evaluation. Besides these features,
the use of HDF5 allows to index the data and make it
self-consistent. Currently, we are creating the files from a
intermediate directory structure on a hard drive. In future
work, we plan to implement a solutions that writes the
acquired data directly into HDF5 files. The challenge here
will be to deal with the relatively high latencies when
creating HDF5 files. Furthermore, we plan to formalize the
storage of map representations and other relevant data in
HDF5 files, for data distribution scenarios as indicated in
Fig. 3.
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