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Abstract. Integrating 3D data with hyperspectral images opens up
novel approaches for several robotic tasks. To that end, we register hy-
perspectral panoramas to cylindrically projected laser scans. With our
approach, the required calibration can be done on board a mobile robot
without the need of external markers using Mutual Information. Qual-
itative results show the robustness of the presented approach, and an
application example demonstrates possible future applications for hy-
perspectral point clouds.
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1 Introduction

These days terrestrial laser scanners are able to acquire billions of points in a
single scan. Laser scanning is used for building 3D environment models [? ] in
many applications. In robotics, these models are used for many purposes, e.g.,
localization, mapping, manipulation, and reasoning to safely interact with the
environment.

Integrating spectral information into such models is highly desirable. Hy-
perspectral cameras split up the spectrum of the incoming light into buckets
of wavelength intervals to capture the intensity distribution. These cameras are
usually built as line cameras, where one dimension of a frame refers to the spatial
image component and the other to the spectral distribution.

Mapping hyperspectral information to high resolution 3D point clouds makes
the grounding of material characteristics possible. Currently, hyperspectral im-
ages are mainly collected in remote sensing from airplanes, drones or satellites.
This limits the level of detail to a rough estimation of the location of detected
materials due to the limited resolution. The resulting 2D maps have been used
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for identifying forests, fields, rivers, residential areas, and other structures of in-
terest. In robotics, such segmentation and classification could be used to comple-
ment a plethora of applications, e.g., navigability estimation, semantic mapping
and localization. In particular for navigation for and exploration purposes, it is
important not only to know which materials are present in a given environment,
but also precisely where they are located.

To combine 3D spatial information from terrestrial laser scanners and hy-
perspectral images, the two sensors need to be calibrated with respect to each
other. In this paper, we present a method to automatically calibrate a hyper-
spectral image of a line camera to a high-resolution point cloud without using
external calibration patterns. It is fully integrated into a mobile robot, controlled
by the Robot Operating System (ROS). We present and evaluate the used cali-
bration technique and the present preliminary results, e.g., using the well-known
NDVI (Normalized Difference Vegetation Index) to segment pathways in a hy-
perspectral point cloud for navigation. Furthermore, we extended and enhanced
the state-of-the-art calibration techniques to satisfy the time constraints, which
need to be observed in a robotics setting.

2 Related Work

Fusing point clouds and color data from RGB camera images is state of the art in
the fields of robotics and photogrammetry. The most common solution for the re-
quired extrinsic calibration is to use specific calibration patterns with detectable
common feature points, e.g., a checkerboard. These correspondences are used
to compute the extrinsic parameters by linear transformation and Levenberg-
Marquardt optimization [11].

To align point clouds and RGB or hyperspectral image data with such a
model, multiple methods have been presented: In [3], a calibrated RGB camera
on top of a laser scanner is used to create an RGB-colored point cloud, which is
registered to the hyperspectral image using SIFT features and a piecewise linear
transformation. However, this approach requires to mount an additional camera,
which may not be possible on mobile robots due to space constraints.

In [1] this is solved by using manually placed high-reflectance markers in the
scene that can be detected in both the hyperspectral image and the reflectance
channel of the laser scanner. These markers and additional automatically found
correspondence points are used for the image matching. The use-case was further
simplified by capturing only images with small panorama angles. However, for
in-place recalibration on 360◦ images, placing markers is no option. Marker-less
solutions [7, 12] rely solely on automatically detected correspondence points us-
ing SIFT and SURF features. However, as the image domains of reflectance data
and the hyperspectral imaging are different, we found that establishing stable
correspondences in both images is strongly dependent on the environment and
on lighting conditions. An approach for registering image data from different
domains without requiring the computation of special features is Mutual Infor-
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mation (MI). The MI metric is derived from the idea of Shannon entropy [6]; it
is state of the art for registering of CT and MRI images.

In [9], Normalized Mutual Information (NMI) is applied to the registration of
laser scans and hyperspectral images. It requires no key-point search or manual
correspondences and can therefore be used in our context. Therefore, we deem
this approach as a suitable starting point for our own registration problem.

3 Generating Hyperspectral Panoramas

Fig. 1: Pluto equipped with a Riegl
VZ400i terrestrial laser scanner and a
Resonon Pika L hyperspectral camera.

We installed our hyperspectral scan-
ning system on the mobile robot
Pluto, based on a VolksBot XT plat-
form. It features a Riegl VZ400i high
resolution 3D laser scanner and a
Resonon Pika L hyperspectral line
camera, mounted on top of the rotat-
ing laser scanner. The camera records
up to 297 independent spectral chan-
nels between 400 nm and 1000 nm,
which are accumulated to a hyper-
spectral panorama image, while the
scanner is rotating and recording the
point cloud data.

Unfortunately, the camera does
not deliver time stamps and guaran-
tees no continuous frame rate. Hence,
synchronization of the arriving frames
with the angular information from
the laser scanner, which delivers time-
stamped data, is required to produce
consistent panoramas. During a scan,
all frames from the hyperspectral camera are buffered and associated with the
current scan angle. After a scan is completed, the panorama is built up from the
buffered line images. To produce a coherent aspect ratio, the resulting panorama
is scaled according to the angular resolution of the laser scan. Missing frames are
automatically corrected by interpolating adjacent lines, to produce a consistent
hyperspectral panorama image, from which a pseudo-RGB image is computed
for the registration. For later use, the full spectral data is saved separately. Fig 2
presents an example for this panorama generation in pseudo-RGB (derived from
the appropriate channels).

4 Extrinsic Calibration

The extrinsic calibration of the laser scanner and the hyperspectral panorama
is done in 3 successive steps, which will be presented in the following sections.
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Fig. 2: Pseudo-RGB section of a panorama generated by the system.

x ¼ r11ðX � X0Þ þ r21ðY � Y0Þ þ r31ðZ � Z0Þ
y ¼ r12ðX � X0Þ þ r22ðY � Y0Þ þ r32ðZ � Z0Þ
z ¼ r13ðX � X0Þ þ r23ðY � Y0Þ þ r33ðZ � Z0Þ:

ð2Þ

Panoramic Camera Model with Additional Parameters

The camera model as outlined in the previous section can be considered an ideal
model, which does not pay attention to the physical reality of the camera. In the same way
as for central perspective cameras, the panoramic camera model has to be extended by
additional parameters, which should be determined in a calibration process. The additional
parameters are contained in correction terms Dx¢ and Dy¢, which are added to the
observation equations (1):

x0pano ¼ x00 � c arctan
�y
x

� �
þ Dx0pano

y0pano ¼ y00 �
czffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p þ Dy0pano:

ð3Þ

Interior orientation.The interior orientation is given by the principal distance c and the
vertical component of the principal point (y00). Because of the linear array principle the horizontal
component of the principal point (x00) is not relevant.

Eccentricity.The eccentricity of the projection centre with respect to the rotation axis is
illustrated in Fig. 4. The following equation can be derived from Fig. 4 through the intercept
theorem:

y0

z
¼ cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

� e
: ð4Þ

Fig. 3. Basic cylindrical camera model.
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Fig. 3: Cylindric camera model principle [5].

4.1 Cylindric Camera Model

The first step in the extrinsic calibration is to find an appropriate projection
of the 3D scan points into a panoramic image plane that can be compared
with the hyperspectral panorama. Since the hyperspectral camera is rotating
together with the laser scanner, the image geometry cannot be described by a
pinhole model and a central perspective projection [1, 2]. Central projection is
only valid for the across-track direction, while an angular component needs to be
considered in the along-track direction. This is achieved by the cylindric camera
model proposed in [5]. It describes the projection of 3D points into a cylindrical
image as shown in Fig. 3. For each data point P (X,Y, Z) in the 3D scan, the
following steps are performed to compute its pixel coordinates:

1. Transform world coordinates into camera coordinates:

p = R−1 (P −O) (1)

where O is the camera origin in world coordinates, R (ω, φ, κ) is the rotation
matrix, and p (x, y, z) is the resulting 3D point in camera coordinates.
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2. Project p to a cylinder surface surrounding the camera origin:

xpanoi = xp − c arctan

(
−yi
xi

)
+∆xpano

ypanoi = yp −
czi√
x2i + y2i

+∆ypano

(2)

Here xp and yp denote the x and y components of the principal point, c
the principal distance and ∆xpano

, ∆ypano
are optional correction terms to

include compensation for radial distortion of the camera lens and imperfectly
aligned axes [5]. For our system, we do not include them into the optimization
problem, since we are dealing with range measurements.

3. Finally, convert the obtained 2D coordinates into the pixel coordinates of
the resulting image:

ximage
i =

xpanoi + minj xj
Ix

yimage
i =

N

2
− ypanoi

Iy

, where

Ix =
maxi xi −mini xi

Rx − 1

Iy =
maxi yi −mini yi

(Rx · ξ)− 1

(3)

are the value increments for one image pixel in x and y directions. Rx is the
horizontal resolution of the projected image, and ξ is the aspect ratio of the
resulting image, which is computed from the projected coordinates xi, yi.

The height of the resulting point cloud panorama is usually greater than that of
the hyperspectral panorama due to the limited aperture angle of the hyperspec-
tral camera. Therefore, the regions not covered by both sensors are automatically
cut from the image after the projection. A section of a panorama image gener-
ated from the point cloud using the reflectance channel as intensity values is
shown in Fig. 4.

(a) (b)

Fig. 4: Comparison between a grayscale section of the hyperspectral panorama
(a) and the projected point cloud (b). The black borders of nearby objects in
the point cloud are caused by the transformation into the camera coordinate
system.
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4.2 Mutual Information

After the projected scan image is computed, we compare it with the hyper-
spectral image using the Mutual Information metric. This metric measures the
statistical dependence between two random variables. It is derived from the
Shannon entropy [6]. It is especially well suited for multimodal images because
it accounts for areas having different intensity values in both images.

Normalized Mutual Information (NMI) [8] is an extension of the regular
Mutual Information that attempts to remove dependency of regular MI on the
total amount of information contained in both images, as this dependency might
cause MI to produce false global maxima where the overlap of both images is
small. NMI is computed from the Shannon entropies as follows:

NMI (M,N) =
H (N) +H (M)

H (M,N)
, (4)

where

H (M) = −
∑
m∈M

pM (m) log
1

pM (m)

H (N) = −
∑
n∈N

pN (n) log
1

pN (n)

H (M,N) = −
∑
m∈M

∑
n∈N

pM,N (m,n) log
1

pM,N (m,n)

(5)

are the individual and joint entropies, respectively. M,N are the discrete random
variables, pM , pN is the probability distribution over M and N , respectively, and
pM,N is the joint probability distribution of both variables. For image registra-
tion, the probability distributions pM , pN , and pM,N can be approximated by a
histogram of the intensity values

p̂ (X = k) =
1

n

n∑
i=1

φk (Xi) , k ∈ [0, 255] , where φk (x) =

{
1 if x = k

0 otherwise
(6)

Now, the objective function for the optimization problem can be defined as:

Θ̂ = arg max
Θ

NMI (M,N ; Θ) (7)

which has its global maximum at the optimal parameters of the camera model.

4.3 Smoothing the Objective Function

The basic algorithm, detailed in the previous sections, produces a nonlinear,
non-convex objective function Θ̂ with many local maxima (see Fig. 6). Although
this function can be solved on its own already, it requires expensive exhaustive
optimization algorithms like, e.g., particle swarm optimization [9] or simulated
annealing for robust conversion.
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Fig. 6 Example of the resulting objec-
tive functions from the regular (un-
smoothed) and the smoothed his-
tograms.

To enable fast optimization, the objective function Θ̂ has to be smoothed.
Analysis shows that the non-convex behavior is mainly caused by the histogram
approximation of the probability distributions, which suffers from a high mean-
squared error (MSE). Smoothing Θ̂ aims at reducing the MSE, which can be
achieved by various means. A common approach is to smooth the histograms by
using a continuous interpolation method, e.g., kernel density estimation (KDE)
or B-Splines, for approximating the probability distributions [4, 10]. This smoothes
the objective function and makes the target function differentiable, enabling to
use efficient robust gradient-descent-based optimization algorithms. However,
such an interpolation is expensive to compute for high-resolution images like the
360◦ panoramas in our use case. Additionally, the authors in [4] use multiple
image pairs simultaneously to further smooth out the function. This is quite
effective, but results in a significantly increased computational load, because the
projection of the laser points has to be repeated for each scan in every step.

In order to maintain computational efficiency, we use a much simpler ap-
proach for our method. First, we smooth out sharp image edges using a Gaussian
filter on the projected images at the borders of objects, which are produced by
distant points in the laser scan with potentially very different reflectance val-
ues or with no corresponding scan points at all due to the transformation as
shown in Fig. 4b. This in turn smoothes the distribution differences in the com-
puted histograms between consecutive iterations resulting in a smoother target
function.

Additionally, we observed that the resulting histograms from the projected
reflectance images tend to be very sparse when using one bin for each possible
intensity value. In Fig. 5, the projected scan image mostly uses the lower half of
the bins, while the hyperspectral image covers the upper half with many noisy
local maxima. These maxima have a significant effect on the entropy values.
Reducing the number of bins therefore has a significant smoothing effect on
the objective function, while preserving most of the contained information. In
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our experiments, we reduced the number of bins to 16. To smooth the function
even further, we convolve the resulting histogram with a Gaussian kernel. These
steps result in a very smooth objective function with a clear global maximum
and significantly reduced local maxima, as shown in the blue plot in Fig. 6, while
still being computationally efficient.

The smoothed objective function can be optimized using standard optimiza-
tion algorithms that do not require the gradient or Hessian, as the model pa-
rameters θ are not involved in Θ̂ in a differentiable way, due to the histogram
step. We use the Nelder-Mead algorithm with the initial simplex spread over
the entire search space. This algorithm converges to the global optimum after
around 100− 200 evaluations of the target function.

When multiple scan/image pairs are available from the same setup, a similar
technique as in [4] can be utilized. Although not necessary for convergence, using
multiple scans may result in more robust calibration parameters.

5 Experiments

We have implemented our method in Python using the numpy3 and scipy4 li-
braries. As the projection of the point cloud into an image and the computation
of the histograms are by far the most costly parts of the method, we have also
implemented a GPU version of these parts using NVIDIA CUDA. This reduces
the necessary computation time for one iteration significantly to about 50 ms.
The registration of one scan/image pair usually converges within 30 s from the
start which is significantly faster than the time to acquire one scan.

To evaluate our method, we acquired a set of outdoor scans using the setup
depicted in Fig. 1. We kept the setup fixed, so the model parameters are assumed
to be the same for all scans. We constructed the search space from the offset
along the z-axis Z0 from 0.0 m to 0.5 m, the yaw angle κ from −30◦ to 30◦, and
the vertical component of the principle point yp from −0.2 to 0.2, derived from
rough estimations of the setup’s alignment.

All other model parameters are irrelevant for our setup, as the camera is
mounted directly on top of the laser scanner; so they are assumed to be 0 (1
for the principle distance c), but are still included in the implemented model to
support alternative setups. This initialization limits the search space as well as
the runtime and allows for in-field registration on the mobile robot platform. A
global registration using no prior knowledge about the parameters is not possible
using our method, because our smoothing of the histograms does not remove the
nonlinearity of the objective function entirely.

For our experiments, we recorded scan/image pairs at several different out-
door locations, each including both natural and human-made structures. Each
scan contains roughly 11 to 14 million points and each hyperspectral panorama
has a size of approx. 7500×900 pixels. The number of histogram bins was set to
16 for all scans. All images were down-sampled to a horizontal (x) resolution of

3 http://www.numpy.org
4 https://www.scipy.org
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Fig. 7: Calibration results in false colors for several different scans (best
viewed in color). The circular black spot represents the scanning position.

5000 pixels as a compromise between computing time and accuracy of the final
result. The calibrations were executed on a PC using an Intel i7 4930K CPU as
well as a NVIDIA 770GTX GPU for the CUDA Implementation.

In section 5.1, we present qualitative results of our calibration as well as
a short analysis of the obtained parameters. We evaluate the run time of our
method in section 5.2. Finally, we outline possible applications for our setup by
detecting plants and pathways using the hyperspectral point cloud in section 5.3.

5.1 Qualitative Results

To visualize the results of the registration, some scan sections with added hy-
perspectral data are visualized in Fig. 7. The colors are switched, so that the
red colors indicate strong reflectance in the infrared spectral bands to highlight
areas with many plants (chlorophyll) and the green and blue color channels were
flipped, so that blue areas indicate regions with less plants. The light-blue areas
in the image are sky pixels from the panorama, which end up as the colors of tree
twigs, because the laser scanner produces high noise in such areas with many
small structures. Some mis-registration is visible in both images on the metal
structure near the scan position. This is caused by the perspective difference
between the laser scanner and the hyperspectral camera, producing images with
differing information, especially for close objects. So to obtain good registra-
tion results, most larger objects should be a few meters away from the scanner
position, as nearby objects are represented by a larger amount of pixels than
far-away objects and therefore contribute more to the NMI.

Fig. 8 shows the parameter variation for all scans. The variance of the trans-
lation Z0 is clearly much larger than the other parameters. This is expected [4],
as the slight translation between laser scanner and camera has less influence as
the points are far away from the scanning position and as the angular difference
between corresponding points vanishes. Both other parameters are very stable
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Fig. 8: Variation of the estimated parameter values in different scans (blue)
using the same setup and all scans combined (red). TODO: MEAN und Std-
Abweichung einzeichen

for almost all scans. We did another registration using all 10 scans simultaneously
by summing up their histograms (red points in Fig. 8). Especially the translation
estimation benefits from adding more data from different scan positions.

5.2 Run Time Analysis

Method 1 Scan 5 Scans 10 Scans

Basic NMI (particle swarm) 6.3 h > 20 h > 40 h
Basic NMI GPU 498.63 s 2342.76 s 4358.91 s
NMI + smoothing (256 bins) 342.48 s 1777.93 s 3631.66 s
NMI + smoothing (16 bins) 545.77 s 2383.72 s 4271.45 s
GPU implementation 19.87 s 117.62 s 143.39 s

Table 1: Run times of the different approaches for one cali-
bration on a CPU and on the GPU implementation. TODO:
Accurry

We analyzed the run time of our method and the base version without any
smoothing and compared the pure CPU and GPU solutions. The results are
shown in Tab. 1. The horizontal resolution was set to 5000 pixels for all scans.
The run times for the basic version of the algorithm on the CPU for 5 and
10 scans were extrapolated from the run time of the GPU version of the same
algorithm due to their very high run time.

Obviously, the CPU version without smoothing of the objective function is
not feasible due to high run time. Smoothing and reduction of the histogram
size decreased the run time significantly due to the Nelder-Mead optimization,
requiring significantly less evaluations of the target function. Note that the CPU
version using the full 256 bins converged faster than the solution using 16 bins,
but did so on a local maximum only. The GPU implementation is much faster,
converging to the global maximum in just under 20 s for a single scan. It is fast
enough to provide a fast calibration of the camera in the field at high resolutions.
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(a) (b)

Fig. 9: Point cloud viewed in RGB (a) and NDVI (b). Yellow and red colors in
the NDVI image indicate plants, while drivable, vegetation-free pathways are
highlighted in magenta. Best viewed in color.

5.3 Application Example

To demonstrate the practical benefits of hyperspectral point clouds, we demon-
strate an application example, where we used the well-known NDVI index for
segmentation of a path way. For that, we computed the NDVI index for the
point cloud taken together with the panorama presented in Fig. 2. Using a sim-
ple threshold filter, we were able to detect the existing pathway as presented in
Fig. 9. Comparing the two pictures, it is obvious that such an easy segmenta-
tion would be hard to do based on a RGB image. This example is just one of
the new possibilities that open up when using hyperspectral 3D data in robotic
applications, which will be further explored in future work.

6 Conclusion

In this paper, we have presented an approach to calibrate a hyperspectral line
camera against a terrestrial laser scanner on a mobile robot. For this, we used the
well-known Normalized Mutual Information (NMI) approach with smoothing
of the objective function to increase the robustness and reduce the run time.
We have shown that the reduction of the number of bins in the histograms
delivers more stable results and that the use of several scans can be beneficial for
improving the quality of the estimated parameters. The combination of the these
approaches allows to achieve accurate calibration on a mobile system without the
need for key-point detection or artificial markers in the scene, which is extremely
beneficial for real life applications, since a calibration can be done on demand in
the field. If the system is equipped with a GPU, the computation can be sped
up significantly using our CUDA implementation, making it possible to compute
the registration ad-hoc if needed.
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