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Abstract Point clouds are commonly used in robotics to represent 3D
maps. To gain further understanding of their content, it is useful to an-
notate such maps semantically. To segment 3D point clouds with RGB
values, different solutions exist. In machine learning, pre-trained classi-
fiers are used for this purpose. Since it is not always possible to differen-
tiate between entities relying solely on RGB information, hyperspectral
histograms can augment the 3D data. The aim of this work is to eval-
uate, if hyperspectral information can improve the segmentation results
for ambiguous objects, e.g., streets, sidewalks, and cars using established
deep learning methods. Given the reported performance on geometrical
3D data and the possibility to directly integrate point annotations, we
extended the neural network RandLA-Net. In addition to the evalua-
tion of RandLA-Net in this context, we also provide a reference dataset
consisting of semantically annotated hyperspectral 3D point clouds.

Keywords: Point Clouds, Semantic Segmentation, Deep Learning, Hy-
perspectral Imaging

1 Introduction

Semantic maps are essential for autonomous robots to perform goal-directed
and unsupervised tasks. While creating such maps, instances of known classes of
objects have to be labeled in the recorded 3D environment model, which is typ-
ically a 3D point cloud. In analogy to classical image analysis, it is desirable to
learn classifiers that automatically segment point clouds into previously defined
classes. In recent years, advances in deep learning have led to the development
of an increasing number of methods for segmenting point clouds with the help
of neural networks [1]. Currently, one of the best performing neural networks for
classifying 3D point clouds is RandLA-Net [2]. With RandLA-Net, it is possi-
ble to segment large-scale high resolution point clouds, as shown in experiments
on the Semantic3D datasets [3]. In addition to 3D coordinates, some scanning
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systems measure additional surface properties like color or reflectance [1]. In [4]
a terrestrial 3D scanning system is described that captures hyperspectral im-
ages and maps the recorded spectra onto the recorded 3D points. Hyperspectral
imaging has already been successfully applied the field of remote sensing to an-
alyze aerial images. In this discipline, the hyperspectral information is used to
accurately distinguish between different materials [5]. Deep learning using neu-
ronal networks can further increase the segmentation precision [6]. With the
development of hyperspectral laser scanners, it has become feasible to combine
both modalities. However, the combination of hyperspectral data and 3D point
clouds is rarely found in current research and the classification of such data is
even less common. In this paper, we present a first step to apply deep learning
to segment terrestrial hyperspectral point clouds. Given the promising results of
RandLA-Net, our approach builds on top of that network structure. The novelty
of this work is to combine the spatial information encoded in the point clouds
with the additional information in the hyperspectral images. For that, we project
the hyperspectral information directly on the point clouds rather than doing the
classification separately on both domains. Because no benchmark datasets for
classification on hyperspectral 3D point clouds are publicly available, we also pro-
vide a labeled reference dataset. Our experiments show that the classification
quality on the combined data improves significantly compared to the existing
RandLA-Net classifier.

2 Related Work

Classification and segmentation of 2D images has been successfully applied in
many applications like driver assistance systems, medicine, and remote sens-
ing [7]. Many of these image classification approaches rely on deep learning using
neural networks. Similar to 2D images, the objective of classifying or segmenting
point clouds is to assign a label to each 3D point in a point cloud. Labels of inter-
est may be object classes like Cars and Trees, but can also coarser specifications
in terms of object categories such as Vehicle or Vegetation. Using deep learning
to analyze point clouds is a relatively new field of research. Over the last years,
many promising approaches to solve this task have been proposed. A milestone
in research on deep learning-based approaches was PointNet [8], presented in
2017, and its extension PointNet++ [9], which was published shortly afterwards.
Since then, many other methods have been developed and an increasing num-
ber of benchmark datasets for the segmentation of point clouds have been made
available to compare the results of different segmentation methods. Examples
for such benchmark datasets are Semantic3D [3], S3DIS [10], Paris-Lille-3D [11]
and SemanticKitti [12].

Guo et al. [1] evaluated and compared the performance of the most recent
point cloud segmentation methods. They reported that the best results on al-
most all datasets were achieved by using RandLA-Net[2]. Similar to PointNet
and PointNet++, RandLA-Net also uses a point-based approach, where the raw,
unorganized point cloud is fed into the network. RandLA-Net is based on an en-
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coder/decoder architecture and takes n points with corresponding features as
input. The encoder layer consists of dilated residual blocks followed by random-
ized downsampling. The dilated residual blocks are used to compute features
taking the neighborhood of each point into account. Attentive pooling is then
used to generate new aggregated features.

Hyperspectral imaging is the process of capturing digital images, where dur-
ing measurement, the intensity of multiple wavelengths of light is sensed rather
than three color channels (red, green, and blue) as in common digital imaging.
Light visible to humans is physically electromagnetic radiation between 300 nm
to 750 nm. By analyzing the spectral signature of targets, detailed assumptions
about the chemical nature of the material may be inferred. The spectral signa-
ture, for example, can be utilized to differentiate between vegetation and non-
vegetation. This is due to the fact that chlorophyll in vegetation absorbs light
in the red and blue spectral bands in particular. In the near infrared spectrum,
for example, vegetation largely reflects the light [13]. A simple way of classify-
ing vegetation and non-vegetation based on this knowledge is to compute the
Normalized Difference Vegetation Index (NDVI). Vegetation indices can also be
used to determine the health of vegetation. This is used in earth observation to
detect drought or disease [14]. Hyperspectral imaging as a tool for non-invasive
analysis of objects is used in many domains. Examples are agriculture, food
processing, astronomy, geology and environmental research [15][16][17][18]. One
potential limitation of using hyperspectral data is the presence of noise in the
data. The main sources for that are the image sensors themselves, which induce
noise, as well as physical influences like illumination fluctuations and atmospheric
effects [19]. The occurrence of noise negatively influences the performance when
classifying hyperspectral images [20]. Therefore, smoothing techniques are com-
monly applied to enhance the recorded data. Popular examples are median,
moving average or Savitzky-Golay [21] filters. Another commonly used noise re-
duction technique is the Minimum Noise Fraction Transform (MNF) , also some-
times referred to as Noise-Adjusted Principal Components Transform (NAPC).
Unlike PCA, where the principal components maximize the variance, the MNF
transform minimizes the noise content. The first component has the highest
signal-to-noise ratio and the last component the lowest. The MNF transform
was first introduced in 1988 by Green et al. [22] and in 1990 redesigned by Lee
et al. [23] and renamed to NAPC.

Another problem when working with hyperspectral data are illumination
differences, resulting in different spectral intensities within the same material
class. This is caused by different physical properties of materials and the surface
structure of the observed materials. Especially in the near infrared range [24],
scattering effects occur, which lead to a high variance in different samples of
one class. To minimize this variance, the Standard Normal Variant Transform
(SNV) [25] or Multiplical Scatter Correction (MSC) [26] can be applied to equal-
ize the data.

So far, there are only few approaches that use hyperspectral data combined
with spatial data. Buckley et al. [27] use hyperspectral point clouds to classify



4

geological materials in quarries. However, the classification is performed only on
the hyperspectral images. The resulting segmentation is then used as texture for
the 3D scene. Other approaches originate from the field of remote sensing, where
aerial hyperspectral imagery is fused with airborne laser scans. In contrast to
terrestrial laserscans, remote sensing data usually has a low spatial resolution.
Some papers already use such sparse 3D point clouds to segment urban [28][29]
or agricultural scenes [30]. But to our knowledge, no high resolution reference
datasets exist, that allow to investigate the combination of large scale 3D point
cloud segmentation and hyperspectral data in the context of deep learning.

3 The Hyperspectral Semantic Street Scene Dataset

In order to annotate point clouds with hyperspectral data, the camera and the
laser scanner have to be co-calibrated. The extrinsic calibration, which describes
the transformation from laser scanner to camera, is used to convert the 3D world
coordinates into camera coordinates. Using the intrinsic calibration of the cam-
era, the points are projected into pixel coordinates. Thus, a corresponding color
value or, in the case of hyperspectral cameras, a corresponding spectrum can
be assigned to each 3D point. Igelbrink et al. [4] developed a method for an
ad-hoc calibration of a terrestrial 3D laser scanner and a hyperspectral cam-
era. The calibration procedure is performed using an automated, marker-less
method instead of using reference patterns. Igelbrink’s method calculates the
Normalized Mutual Information (NMI), which is a measure of the similarity be-
tween two images. A panorama is generated from the point intensity values of
the 3D laser scan, using the cylindrical camera model, which is then compared
with the hyperspectral panorama. With a perfect calibration, the NMI value is
equal to 1. The Normalized Mutual Information metric is specifically well-suited
for comparing multi-modal images, such as in this case an intensity image from
the laser scanner and the hyperspectral image. An optimization procedure that
maximizes the NMI is then utilized to find the best parameters for the calibra-
tion. The evaluation of the procedure shows that the resulting calibration is very
accurate and is generated in a few seconds through GPU acceleration.

In order to train classifiers, a lot of training data is required. For all classes,
numerous examples should be available, such that the classifiers have a high level
of transferability to previously unseen data [31]. In this work, we chose an urban
environment as a show-case to apply deep learning on the combined data for
several reasons. First, urban environments are an obvious application scenario
for mobile systems. Second, they are often challenging for classical image-based
segmentation, as many elements like streets and sidewalks have similar colors.
To overcome these ambiguities, the inclusion of additional information, e.g., spa-
tial relations from the 3D point clouds is necessary. Third, we expect that the
mixture of different materials like concrete, asphalt and vegetation will lead to
significantly different spectral signatures, that will demonstrate the benefit of
including the spectral domain into the classification process. Given these prop-
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erties of the input data, a trained classifier should be able to differentiate between
streets, sidewalks, cars, vegetation and buildings.

To verify these assumptions, we created a manually labeled reference dataset
(”3D Hyperspectral Semantic Street Scene”, 3DHSSS3). The dataset has been
acquired with a Riegl VZ-400i terrestrial laser scanner with co-calibrated Resonon
Pika L hyperspectral line camera. The measurement setup is shown in Figure 1
(a). During scan acquisition, the laser scanner performs a 360 degree rotation,
which is used to create a hyperspectral panorama image from the single lines
of the hyperspectral camera. The captured points are then projected into the
panorama image, using the method described above [4]. Hence, each point that is
visible from the hyperspectral camera, is associated with the corresponding spec-
tral histogram consisting of 150 spectral values between 600 nm and 1000 nm.
Since the horizontal field of view of the hyperspectral camera (48.5◦) is less
than that of the laser scanner (100◦), not all 3D points are annotated with
hyperspectral values. Areas without hyperspectral values were filtered out to
make the evaluation of the results with and without hyperspectral data more
comparable. As the reflected spectra are affected by external light conditions,
the dataset includes scans taken at different periods in time and under varied
weather conditions. This was done to enhance the stability and accuracy of the
prediction models by providing training examples recorded under diverse illu-
mination situations. The 3DHSSS dataset contains of two road sections in the
city of Osnabrück , as shown in Fig. 1 (b). The first road section is located
at the ICO Innovation Centre of the City of Osnabrück, Germany. The second
is located near the Westerberg campus of Osnabrück University. The position
difference between single scans varies from 15 to 50 meters in each scan sec-
tion. The complete dataset consists of 15 different scans with an average of 45
million points each, resulting in a total of approximately one billion points. In
addition to the 3D coordinates, the laser scanner returns a distance-independent
reflectance measure and pulse shape deviation values for each point, which are
also included.

Within these hyperspectral 3D point clouds, we labeled instances of objects
from the before mentioned categories using a customized 3D labeling tool. To
obtain a ground truth suitable for training, the point clouds were manually seg-
mented into 17 different classes: Street, Sidewalk, Building, Vehicle, Street Lamp,
Fence, Sign, Sign Pole, Bollard, Driveway, Low Vegetation, Bush, Tree Crown, Tree
Trunk, Barrier, Distribution Box and Scan Artifact. All classes except Fence and
Distribution Box are present in all scans. These two exceptions are only visible
in two of the 15 scans. Furthermore, the class Tree has been divided into the
subclasses Tree Crown and Tree Trunk. The reason for this is that tree crowns
are often undesirable in laser scans. Especially, when surface reconstruction is
done, leaves and thin structures like trunks can lead to undesirable scattered
artifacts. With this purpose in mind, we introduced these separate classes to
support filtering.

3 Available in the Robotic 3D Scan Repository: http://kos.informatik.

uni-osnabrueck.de/3Dscans/

http://kos.informatik.uni-osnabrueck.de/3Dscans/
http://kos.informatik.uni-osnabrueck.de/3Dscans/
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VZ-400i

(a) Sensor Setup (b) Dataset

Figure 1: Visualization sensor setup (a) and the two scenes (b) in the 3HSSS data:
the hyperspectral camera (Pika L) is mounted on the terrestrial laser scanner
(Riegl VZ-400i). The acquisition of the laser scan and the hyperspectral image is
synchronized. Figure (b) visualizes the ICO (top) and Campus (bottom) dataset.
The left column of (b) shows aerial images of the respective environments. The
right column of shows the combined point clouds combined from several scan
positions, colorized with the point intensities provided by the laser scanner.

4 Semantic Classification with RandLA-Net

4.1 Pre-Filtering

To prepare the hyperspectral data for classification, we perform several prepro-
cessing steps. Since the laser scans contain many noisy points, we first apply the
Statistical Outlier Removal algorithm (SOR)[32] to the recorded data to filter
out artifacts. The algorithm was parameterized with the neighborhood size set
to 16 and the standard deviation multiplier to 1. This setting provides a good
performance in terms of outlier filtering while still preserving distant points.
However, not all noise points can be eliminated with this heuristic approach.
Another criterion to detect scan artifacts is to analyze the recorded intensity,
as most recorded noise points have low intensity values. The problem is that
some relevant materials like asphalt also absorb a lot of signal energy, hence
also feature low intensity. Therefore, we decided not to apply a simple threshold
filter. Instead, we examined whether these can also be reliably detected with
the classification pipeline as separate class. This would allow to reliably remove
them after classification without influencing the results of the relevant classes.

In a second step, the individual spectra are smoothed using the Savitzky-
Golay filter. The window size was set to 5 and the degree of the polynomial to
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be fitted to 3. Next, the spectra are normalized using the SNV transformation,
where each spectrum is centered around zero and divided by its standard devi-
ation. Finally, the dimension of the hyperspectral data is reduced to 64 using
Principal Component Analysis.

4.2 RandLA-Net Implementation and Parameterization

In our experiments, we used the RandLA-Net implementation of Open3D-ML [33].
To integrate the hyperspectral values into the existing software, we implemented
a custom dataset class in the framework, which provides functionality for load-
ing point clouds and hyperspectral images. The 3DHSSS dataset is stored in the
well known HDF5 file format in a schema similar to [34]. In addition to the 3D
point clouds, hyperspectral images and label sets, all required meta information,
i.e., camera parameters, resolution and scanning position, are also stored in the
HDF5 file. A custom dataset class loads the corresponding training and test data
from the file. Before training, the point clouds are downsampled with a voxel
grid filter to ensure uniform point density (voxel size: 50 mm). After downsam-
pling, a kd-tree is built for each point cloud to support k-nearest neighbor search.
This is required to speed up the computation, since RandLA-Net analyzes the
neighborhood of a point when computing features. We configured RandLA-Net
to use five encoder and decoder layers. After each encoder layer, the point cloud
is reduced using random sampling. The first four layers reduce the points by a
factor of 4 and the last layer by a factor of 2. The output feature dimension of
each layer was set to 16 → 64 → 128 → 256 → 512. RandLA-Net receives 216

points with matching hyperspectral (reduced to a dimension of 64, using PCA)
and reflectance values as input. The initial reduction of the features to 16 by the
first layer bears the risk that potentially important information is lost. However,
with higher dimensions, the complexity of the neural network increases enor-
mously, which makes training on consumer graphics cards unfeasible. To obtain
more training data and make the model more robust, we also apply a data aug-
mentation step before training, which adds noise and rotates or mirrors the data
randomly.

We trained to RandLA-Net models on the generated training datasets: one
with and one without hyperspectral data to provide a baseline for comparison.
The point cloud without hyperspectral values consists of the 3D coordinates and
the corresponding distance-independent reflectance values. The point clouds of
the validation set are then segmented with the trained classifier and the stan-
dard metrics Accuracy, Precision, Recall, (mean) Intersection over Union are
computed to assess the classification result.

5 Evaluation

In this Section we discuss the results of the trained classifiers on point clouds con-
taining both hyperspectral and regular point clouds. Figure 2 shows exemplary
classification results. Both classifiers perform well, however the hyperspectral
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(a) RGB (b) Ground truth

(c) Without hyperspectral (d) with hyperspectral

Figure 2: Segmentation results of one point cloud. The majority of the data is well
classified both with and without hyperspectral data. However, it is noticeable
that without hyperspectral data (c) errors occur when classifiers similar classes
such as tree (brown) and streetlamp (light blue). These can be reduced by the
additional hyperspectral data (d).

information can enhance the segmentation of geometrically similar objects. One
example is the classification of tree trunks which are sometimes confused with
lamps without hyperspectral information. Due to the fact that vegetation can
be separated easily in the spectral domain, the additional information here helps
the network to learn a classifier that exploits this information as well.

For quantitative evaluation, we first compare the average values of the evalu-
ation metrics (cf. Table 1). Because the number of samples of the various classes
in the dataset is partially imbalanced, the averages were calculated using the
macro method as well as the micro method. The macro method calculates the
metrics for each class individually and then averages them, with equal weighting
for each class. In the micro method, the individual true positives (TP), true
negatives (TN), false positives (FP), and false negatives (FN) of the classes are
determined and then summed up to calculate the micro statistics.

Tab. 1 clearly shows that the model with additional hyperspectral data per-
formed better on all metrics. In addition to these averages, the classification
results for each separate class are shown in Table 2. Some classes listed at the
bottom of the table, such as Bollard, Sign Pole, Barrier, and Fence, are classi-
fied very poorly in some cases because the number of samples in the dataset
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are too low. The proportion of samples of these classes in the dataset is less
than 1%. When examining the individual class results, it is evident that the use
of additional hyperspectral data can improve the quality of the classifier. For
the classes Scan Artifact, Street and Vehicle the hyperspectral data results in less
false positives (noticeable by the higher precision values).

Scan artifacts are detected successfully with and without hyperspectral data,
though without hyperspectral data the false positive rate is very high. The mod-
els can therefore also serve as a filter to remove undesired scan artifacts. As
discussed before, the metrics also reflect the observation that classification of
tree trunks is improved. Without hyperspectral data, Tree Trunks are often mis-
classified as Street Lamps (see Figure 2). Here again the hyperspectral data leads
to a better distinction between similar objects with a different material compo-
sition.

6 Conclusion and Outlook

We have established an initial baseline to demonstrate that hyperspectral data
as additional domain to spatial data can improve segmentation and classification
with neural networks on 3D data. We showed that RandLA-Net can be extended
with little effort to support the segmentation of hyperspectral 3D point clouds.
The segmentation results on the provided manually labeled reference dataset
prove that the inclusion of this additional data domain improves the segmen-
tation results as expected. In future work, the data basis in terms of reference
classes should be further improved to achieve a better generalization of the deep
learning models. In particular, point clouds of regions containing more of the
less common classes should be included. Additionally, similar classes should be
combined, e.g., bush and tree crowns or barrier and bollard. Furthermore, it
would also be beneficial to capture images at different seasons and more varying
lighting conditions, since the spectral signature of materials is strongly depen-
dent on the ambient illumination. Currently, we only use the standard version of
RandLA-Net to include the hyperspectral data. Since hyperspectral data is high
dimensional, the original network structure should be enhanced to support such
data more efficiently, as it is currently designed to consider only few point at-

Table 1: Comparison of classification results for the model with and without
hyperspectral data, using standard metrics: IoU (Intersection over Union),F1-
Score, Accuracy, Precision and Recall. Due to imbalanced data, the averages of
the metrics were calculated using both the micro and macro methods.

Spectral Acc.
IoU

(Macro)
IoU

(Micro)
F1

(Macro)
F1

(Micro)
Precision
(Macro)

Precision
(Micro)

Recall
(Macro)

Recall
(Micro)

No 0.83 0.39 0.72 0.46 0.83 0.45 0.83 0.54 0.83
Yes 0.89 0.52 0.80 0.60 0.89 0.66 0.89 0.61 0.89
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Table 2: Per class results of the classification models. The results are presented
as Intersection over Union (IoU), Precision (Pre) and Recall (Rec)

Without
Hyperspectral

With
Hyperspectral

Class IoU Pre. Rec. IoU Pre. Rec.

Scan Artifact 0.15 0.16 0.99 0.86 0.89 0.97
Street 0.82 0.83 0.98 0.89 0.90 0.98
Vehicle 0.32 0.32 0.96 0.85 0.86 0.98
Sign 0.82 0.94 0.86 0.74 0.91 0.79
Building 0.63 0.98 0.64 0.94 0.99 0.95
Sidewalk 0.59 0.76 0.72 0.59 0.87 0.64
Driveway 0.03 0.08 0.04 0.12 0.17 0.29
Tree Trunk 0.17 0.25 0.34 0.55 0.71 0.70
Tree Crown 0.90 0.90 0.99 0.90 0.90 0.99
Bush 0.85 0.97 0.87 0.75 0.97 0.76
Low Vegetation 0.79 0.84 0.93 0.56 0.57 0.97
Street Lamp 0.43 0.49 0.79 0.70 0.78 0.88
Bollard 0.00 0.00 0.00 0.01 0.02 0.01
Sign Pole 0.00 0.00 0.00 0.01 1.00 0.01
Distribution Box 0.01 0.04 0.03 0.13 0.34 0.17
Barrier 0.00 0.00 0.00 0.00 0.00 0.00
Fence 0.01 0.02 0.04 0.15 0.25 0.27

tributes. Here, special encoder/decoder designs to pre-classify the hyperspectral
data seems to be a promising approach for future developments.

References

1. Guo, Y., Wang, H., Hu, Q., Liu, H., Liu, L., Bennamoun, M.: Deep learning for
3d point clouds: A survey. IEEE Transactions on Pattern Analysis and Machine
Intelligence 43(12) (2021) 4338–4364

2. Hu, Q., Yang, B., Xie, L., Rosa, S., Guo, Y., Wang, Z., Trigoni, N., Markham, A.:
Randla-net: Efficient semantic segmentation of large-scale point clouds. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR). (June 2020)

3. Hackel, T., Savinov, N., Ladicky, L., Wegner, J.D., Schindler, K., Pollefeys, M.:
Semantic3d. net: A new large-scale point cloud classification benchmark. arXiv
preprint arXiv:1704.03847 (2017)
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