
Data Handling in Large-Scale Surface
Reconstruction

Thomas Wiemann1, Marcel Mrozinski1, Dominik Feldschnieders1,
Kai Lingemann2, and Joachim Hertzberg1,2

1 Knowledge Bases Systems Group, Osnabrück University,
Albrechtstr. 28, 49076 Osnabrück, Germany
twiemann|jhertzberg@uni-osnabrueck.de

http://www.informatik.uni-osnabrueck.de/kbs/

2 DFKI Robotics Innovation Center, Osnabrück Branch,
Albrechtstr. 28, 49076 Osnabrück, Germany,

firstname.lastname@dfki.de

Abstract. Using high resolution laser scanners, it is possible to create
consistent 3D point clouds of large outdoor environments in short time.
Mobile systems are able to measure whole cities efficiently and collect
billions of data points. Such large amounts of data can usually not be
processed on a mobile system. One approach to create a feasible envi-
ronment representation that can be used on mobile robots is to compute
a compact polygonal environment representation. This paper addresses
problems and solutions when processing large point clouds for surface
reconstruction.

Keywords: surface reconstruction, 3D laser scanning, polygonal map-
ping

1 Introduction

Laser scanners are commonly used to create 3D representations of outdoor
scenes. When mounted on mobile systems, it is possible to measure large en-
vironments in short time. For robotic applications like localization, point clouds
are an inefficient representation, since the collected 3D points are not topolog-
ically connected and even at high resolution, they do not deliver a continuous
surface representation, just samples. Another problem is the large number of
points that need to be collected and processed. Terrestrial laser scans are able
to collect billions of points in a single scan. Therefore it is practically impossible
to process such amounts of data on mobile systems.

A method to overcome these drawbacks is to compute polygonal meshes from
the input data. These data structures deliver topologically connected continu-
ous surface representations. Using suitable mesh optimization algorithms, very
compact and geometrically correct environments representations are generated.
The elements in such meshes, usually triangles, can be organized in efficient



2

search structures like AABB trees for ray tracing and collision detection. To-
gether with automatically generated textures [10], the geometric information of
the laser scans can be fused with color information.

Polygonal meshes of large environments are typically processed offline due
to hardware constraints. But the generated environment representations can be
used on-board a mobile robot at least to represent the static parts of a scene. In
this paper we present efficient methods to generate such meshes in short time.
Emphasis of the presented procedures lies on minimizing the computation time
and memory consumption during the reconstruction process.

The remainder of this text is organized as follows: First we will present the
main features of state of the art reconstruction algorithms. In this section we
will also discuss common problems that occur during reconstruction. The next
section will present several solutions to these problems that are implemented in
the Las Vegas Surface Reconstruction Toolkit (LVR) [13]. Section 4 will present
experimental results, the final section concludes.

2 Reconstruction Methods

Surface reconstruction methods can roughly be categorized into methods based
on direct triangulation [1, 5] and algorithms that compute a mathematical sur-
face representation [4,6,8], commonly an iso surface, that is then reconstructed
using suitable polygonalization algorithms like Marching Cubes [9]. An extensive
evaluation of the features of the different algorithms can be found in [12]. Based
on the results presented in [12], this paper focuses on Marching Cubes-based
reconstructions. The bottleneck in terms of run time for this algorithms is the
computation of surface normals to approximate an iso surface: Each point has
to be associated with a normal that represents the orientation of the surface
that point belongs to. Once the iso surface is computed, it is polygonized using
a voxel grid. The resolution of this voxel grid mainly determines the amount of
memory that is needed to compute the approximation. If the extent of a scene is
large, as is the case in outdoor scenarios, the achievable resolution is limited due
to memory constraints. For large environments even optimized triangle meshes
may contain too many elements to be stored in the working memory of a mobile
system. Therefore a smart management of the created data is needed, to swap
relevant chunks of data from the complete map into the system’s RAM.

3 Large-Scale Data Handling in Surface Reconstruction

In this section we present approaches to handle the collected point cloud data
efficiently to overcome several of the problems sketched in the previous section.

3.1 Optimized Data Structures

The Marching Cubes Algorithm needs a discrete voxel grid of predefined reso-
lution to compute a polygonal approximation of an iso surface. Usually octrees



3

or hash-based approaches are used as grid representations. In LVR the default
structure to represent occupied voxels is hash-based: Each data point is shifted
to a discrete virtual grid, i.e., for a given voxel size v the indices that represent
the affected voxels are calculated by:

i = bx− xmin

v
c, j = by − ymin

v
c, k = bz − zmin

v
c

where xmin, ymin and zmin are the minimal occurring coordinates values in the
respective direction. Based on these indices and the known dimensions dimx,
dimy and dimz a hash function H(i, j, k) is defined to access the voxels stored
in a hash table:

H(i, j, k) = i · dimx · dimy + j · dimy + k

Fig. 1. Shared corners of voxels and triangle vertices in regular voxel grinds. Vertices
that have already been created in adjacent cells have to be identified.

The main benefit of this representation is that the neighboring voxels of a
given cell can be accessed easily and in constant look-up time by increasing
or decreasing the grid indices. In LVR’s Marching Cubes implementation, the
neighbor relations are used to determine redundant vertices. In each cell it is
locally checked if a needed triangle vertex was already interpolated in a neighbor
cell (cf. Fig. 1). If such a vertex is found, it is reused by storing a reference to
the already created vertex. By checking for redundant vertices, the meshes are
topologically sound, which is important for later mesh optimization.

However, hash tables have a noticeable memory overhead. As presented in [3],
octrees can be implemented very efficiently to represent voxels. The presented
pattern reduces the needed memory per voxel significantly compared to other
available implementations. We adapted and extended this structure in such a
way, the created octrees can be used for Marching Cubes surface reconstruc-
tion. To be compatible with LVR’s reconstruction pipeline, we implemented the
following additional functionalities:

look-up of neighbor voxels. To search for redundant vertices, we added a
search functionality similar to the hash structure described above.

Parallelization. In LVR the vertex interpolation for each cell is done in par-
allel using OpenMP. To achieve optimal performance, we made all search
operations thread-safe.



4

Dynamic addition of new cells. LVR detects holes in the grid structure to
fill up missing triangles on continuous surfaces. Therefore the new octree
structure must support the inclusion of new cells at predefined positions in
the voxel grid.

The first problem can be solved by exploiting the encoding presented in [3]:
Each node contains a bit pattern that encodes whether a child exists and, if it
does, whether it is a leaf. Every bit refers to a sub-octant with known relative
position. A look-up table encodes for each leaf, where (i.e., in which child of the
current leaf’s parent node) to search for an existing neighbor.

If we do not find a leaf in the parent’s node, we check recursively the next
higher level, yet the local relations remain the same, hence we can search at
predefined positions in the surrounding leafs. An example for the used encoding
is shown in Fig 2. In this figure the search for possible neighbors containing
the needed vertex is given. Generally, the internal positions according to the
numeration can be expressed as well, but is left out here for sake of simplicity.
Using this information, we can efficiently search for already created vertices
without memory overhead, since all needed information can be computed from
the internal encoding.

Vertex Neighbors

e0 4 2 6
e1 3 5 7
e2 0 6 4
e3 1 5 7

. . .

Fig. 2. Calculation of look-up tables for voxel neighbor search. Given numeration of
possible vertex positions (left), and relative voxel positions (middle), a table for possible
duplicate vertex positions can be pre-computed. In the example the first row in the
column means: Vertex e0 can possibly be found in the relative neighbors 4, 2 and 6 in
the given representation.

For parallel reconstruction, every child node in the octree is evaluated in
parallel. Since the number of leaves is usually high, we use a thread pool pattern
the reduce thread generation and termination overhead. Except checking for
joined vertices, reconstruction on each leaf can be performed independently.
Critical is the integration of new triangles into the global mesh representation:
Insertion of vertices and triangles is done via the interface functions addVertex
and addTriangle. Memory access in these functions is therefore protected using
mutexes. Using these extension, we were able to achieve comparable run time



5

Fig. 3. Reconstruction results with and without grid extrusion. The obviously missing
cells in the left image (marked red) are filled up for a continuous representation.

performance to the hash-based approach whilst reducing the memory overhead
significantly as the evaluation in Section 4 demonstrates.

To get a complete reconstruction in sparse areas, LVR extends the grind
around borders by additional surrounding cells, since in sparsely scanned areas
it may happen that the grid shift of the data points excludes single voxels. If
these empty voxels are surrounded by existing cells, we assume that we can
fill up these holes. We call this grid extrusion. To implement this, we simply
have to check for all leaves, if the respective neighbors are present using the
neighborhood encoding. If a border leaf is found, the missing cells for extrusion
are inserted into the tree. The influence of this extrusion to sparse scan data is
shown in Fig 3. The kD tree-based segmentation delivers chunks of equal size
with variable densities but locally suitable distributions to ensure stable normal
estimation results. In Section 4 we will discuss the influence of the distribution
on the computed normals.

3.2 Distributed Normal Calculation

Surface normal estimation is easy to parallelize, since it follows the SIMD scheme.
In multi core systems, the process can be parallelized using a framework like
OpenMP. For mapping of large areas it may be beneficial to outsource exten-
sive calculations from the on-board hardware, especially if further infrastructure
for data management is provided externally. In surface reconstruction the com-
putationally most expensive part is the calculation of surface normals for the
collected laser scan data. LVR therefore provides an MPI-based distributed nor-
mal estimation to distribute the data to a computing cluster that can be set up
using standard desktop computers. The registered point clouds are divided into
chunks of equal size that are sent from a master to several clients that perform
the normal estimation. The calculated normals are then sent back to this master
and integrated into the reconstruction pipeline.



6

Fig. 4. Examples of data packages created from the kD tree (yellow). All consist of
a similar number of points. Left: Region with low point density. Middle: Region with
high point density. Right: Points highly distributed within the chunk.

The main challenge in this approach is to generate the data packages that
are sent to the clients. To ease the scheduling for data distribution, these chunks
should be of equal size. Furthermore, to produce accurate results it has to be
ensured that points are clustered to chunks that contain points from the same
surface. Therefore a randomized selection is not suitable. Octrees generate leaves
of equal size, but it is not ensured that the number of points represented in them
is more or less constant. We implemented a subdivision based on kD trees. The
split rule we used is to sub-divide a leaf alternately along the longest mean
axes of the point coordinates if a maximum number of points is reached. The
maximum point criterion ensures that most chunks are filled up to the predefined
chunk size. The alternating split along the mean axes ensures that points are
clustered locally, which is required for normal estimation. To prevent splits that
may produce undesirable point configurations, e.g., leaves with too few points
or too low local density, we try to detect such configurations by analyzing the
shape of regions covered by the leave points. If the bounding box of the stored
points becomes too narrow, we shift the split axis until a reasonable density and
point distribution is found. Some examples of the resulting local packages are
shown in Fig. 4.

After the packages are computed, they are serialized and sent to the MPI
clients which compute the normals. Since the results are usually not returned in
the same order as they were sent, all points and computed normals are indexed
with a unique ID to correlate the computed results with the point cloud data.
After all normals are calculated, we globally average all normals with k neighbors
to smooth the data.

3.3 Data Storage and Distribution

For safe navigation, robots need a suitable navigation map that contains all
relevant obstacles. However, for large-scale applications even a reduced polygonal
representation will usually be too large to be stored in the local memory of a
robot. Real world scenarios are usually dynamic. Hence the computed maps
have to be updated dynamically. We propose to use a Geometric Information
System (GIS) – here we use PostGIS – to overcome these problems. PostGIS
provides infrastructure to dynamically insert and query geometric information



7

via a C++ interface. The computed maps are stored in a central data base.
The needed navigational maps for different robots can be requested on demand,
based on the robot’s current position. This way, the size of the navigation maps
can be limited according to the robot’s memory size. If the robot leaves a known
region, it can request a new map from the server. The complete structure of our
system is shown in Fig. 5.

Topology

Semantic

Point-Clouds

LVR Recon-
struction

Mesh

Semantic
Labeling

Topology
Extraction AMCL

Move 
Base

Map Server Path Planner

Grid Map Goal Pose

Geometry

GIS Database

Fig. 5. Integration of the GIS into mapping and
navigation

The incoming point clouds are
processed using LVR to create an
optimized polygonal mesh that is
stored in the GIS database. In a
post-processing step the meshes
can be annotated with seman-
tic information. This information
is either computed automatically,
e.g., in terms of walls, floors and
ceilings in buildings [14], or drive-
able areas via clustering of pla-
nar patches in outdoor applica-
tions. If the stored map consists
of several parts, the topological
connections between single maps
can be stored as well (e,g., ele-
vators in a multi story building).
More details concerning the se-
mantic mapping system are pre-
sented in [2]. The main benefit
of the GIS is that all relevant
data for robotic task planning are
stored in one single data base.
The needed navigation maps are

computed by clients that query the data base and fuse semantic information
with geometric information into a ROS navigation map. GIS systems are able to
handle large amounts of polygonal data. Hence it is possible to generate online
maps of suitable size for different robots from a single data source.

The navigational maps are generated with an approach similar to the one
presented by Hornung et al. [7]: Taking the geometry of the robot into account,
we define several horizontal layers. All relevant obstacles for the robot’s parts in
each layer are projected into different 2D collision maps that are used for path
planning. For instance, with this approach we are able to move the base of our
robot under a table to bring its robotic arm closer to the working area.

4 Experimental Results

This section describes an evaluation of the methods presented above. First, we
evaluate our octree-based reconstruction. Second, we demonstrate the speed up



8

Fig. 6. Comparism of the memory consumption for a high resolution laser scan (18
million points) and a laser scan taken with a tilted laser scanner.

in normal estimation using the distributed approach. Third, we demonstrate an
application example of automatic construction of navigation maps from data
stored in the GIS data base.

4.1 Evaluation of Octree-Based Reconstruction

First, we compared the memory consumption of the octree-based reconstruc-
tion with the hash-based reconstruction. The results are presented in Fig. 6.
We tested the two reconstruction methods on two different data sets: A high
resolution laser scan consisting of 18 million points and a laser scan taken with
a tilting SICK laser scanner with about 300.000 points. As the amount of mem-
ory needed theoretically increases cubically with the resolution, we varied the
voxel sizes in the evaluation. For relevant voxel sizes between 5 cm and 10 cm
the octree reconstruction saves about one third of total memory. Interestingly,
for lower voxel sizes the memory consumption is nearly constant, with the oc-
tree needing more memory than the hash grid. This is due to the static internal
data structures that are needed to manage the tree linking or the hash table
respectively. For high resolution reconstructions the memory overhead becomes
negligible and the octree-based reconstruction outperforms the hash-based one.

A comparism of reconstruction times between the hash grid structure and
octree is shown in Fig 7. It is obvious that the octree reconstructions do not
scale as well as the hash-based reconstruction with increasing number of threads.
This is due to the fact that we have to search recursively in the parent nodes for
neighbor voxels which implies that searches will have different run time, which in
turn makes thread scheduling more difficult. Furthermore, the recursive search
has to lock access to shared vertex data, which also reduces the performance
gain. In general, as a rule of thumb, the octree needs about 25% more time than
the hash grid-based reconstruction. To sum up: The octree reduces the memory
overhead significantly for small voxel sizes at the cost of run time.



9

Fig. 7. Comparism of reconstruction run time on a SICK LMS laser scan between
hash grid (left) and octree (right) for different voxel sizes in parallel reconstruction
with multiple threads.

4.2 Evaluation of the Distributed Normal Computation

Fig. 8. The two data sets used for evaluation of distributed normal calculation. Left:
outdoor data set consisting of 17 million points, right: indoor data set with 30 million
points.

To evaluate the MPI-based distributed normal estimation, we used two dif-
ferent large-scale data sets that represent different geometries. One data set was
an outdoor scan of on outdoor scene consisting of 17 million points, the second
one was an indoor scan of several offices, consisting of 30 million data points,
cf. Fig. 8. First, we evaluated the scaling ability of the presented approach on
an pool of up to 25 standard Intel Core i3 desktop computers that were con-
nected through our public university network. We deliberately used no closed
setup to demonstrate that such clusters can be easily set up on demand using



10

Fig. 9. Run time of distributed normal estimation with raising number of clients.

our software. Fig 9 shows the results of the experiments for two different normal
estimation methods, namely regression plane calculation via least squares fit and
RANSAC.

Both approaches scale very well with the number of available clients. Without
distribution, the indoor data set needs about 25 minutes to compute, the outdoor
data set 5 Minutes. The graph shows that the run time nearly halfs with doubled
number of available clients. Using 24 clients, the reconstruction times drop down
to 5 minutes indoor and 2 Minutes outdoor. That is a relative speedup of 17.7 on
the indoor data and 18.6 on the outdoor data. This figures include data transfer
and management overheads.

The evaluate the influence of the sub-division into data packets by the host
process, we compared the estimated normals via MPI with the normals computed
by a single process that had the complete point cloud available. Fig. 10 shows the
results for RANSAC-based normal estimation. The histogram shows the number
of normals whose orientation had a certain deviation of a certain degree, i.e.,
many matches with little angular deviation means a good correspondence to
ground truth. On the indoor data set 75% of the computed normals were within

Fig. 10. Comparism of normal deviations for both data sets.



11

Fig. 11. Navigation map generation. Geometry is extracted from the reconstruction
(top left) and fused with semantic annotation (bottom left) to generate individual
navigation maps for two different sized robots (gray for a small robot, red for a large
robot).

an error margin of 5◦, 82 were within this limit the outdoor data set. Since LVR’s
Marching Cubes implementation averages the signed distance to the iso surface
these deviation are negligible and had no significant impact on the mesh quality.

4.3 Application Example for Dynamically Computed Navigation
Maps

Fig. 11 shows an application example of the navigation map generation presented
in [2] for two different robots using a shared GIS data base. Via a parallel cut
through the reconstruction according to the height of the robots, individual
navigation maps are generated from a common 3D data source. The semantic
classification of polygons, e.g., undrivable stair cases, can be integrated into the
navigation map. The application example shows the calculated paths for a large
and a small robot under the presence of tables as presented in [11]. The large
robot computes a path around the tables according to its individually generated
collision map, whilst the small robot can drive under the tables, that are not
present as obstacles in its collision map. This example shows that the storage of
3D geometric information and semantic annotation in GIS can help to reuse the
collected and post-processed data on different platforms.

5 Conclusion

This paper presented a family of approaches to improve the processing and
management of data from large-scale laser scans in the context of polygonal re-
construction for mobile robots. The introduction of octrees for reconstruction
can save memory in the presence of a huge amount of voxels. MPI-based data



12

distribution can speed up the required normal estimation significantly. The cen-
tral storage of the processed data in a central data base can be beneficial, if the
data is reused on different platforms. Furthermore, the representation of seman-
tic information in a relational data base can be easily fused with geometry using
PostGIS.

References

1. N. Amenta, S. Choi, and R. K. Kolluri. The power crust. In Proceedings of the 6th
ACM Symposium on Solid Modeling and Applications (SMA ’01), pages 249–266,
New York, NY, USA, 2001. ACM.

2. H. Deeken, S. Pütz, T. Wiemann, K. Lingemann, and Hertzberg J. Integrating
semantic information in navigational planning. In Proc. ISR/Robotik 2014, 2014.

3. J. Elseberg, S. Magnenat, R. Siegwart, and A. Nüchter. Comparison of nearest-
neighbor-search strategies and implementations for efficient shape registration.
Journal of Software Engineering for Robotics (JOSER), 3(1):2–12, 2012.

4. G. Guennebaud and M. Gross. Algebraic point set surfaces. In ACM SIGGRAPH
2007 papers, 2007.

5. H. Edelsbrunner and E.P. Mücke. Three-Dimensional Alpha Shapes. ACM Trans-
actions on Graphics, 13:43–72, Jan. 1994.

6. H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Surface re-
construction from unorganized points. Computer Graphics, 26(2), 1992.

7. Armin Hornung, Mike Phillips, Edward Gil Jones, Maren Bennewitz, Maxim
Likhachev, and Sachin Chitta. Navigation in three-dimensional cluttered envi-
ronments for mobile manipulation. In Proc. ICRA 2012, pages 423–429, 2012.

8. M. Kazhdan, M. Bolitho, and H. Hoppe. Poisson surface reconstruction. In Pro-
ceedings of the 4th Eurographics Symposium on Geometry Processing (SGP ’06),
pages 61–70. Eurographics Association, 2006.

9. W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3D surface
construction algorithm. In ACM SIGGRAPH, 1987.

10. K.O. Rinnewitz, T. Wiemann, K. Lingemann, and J. Hertzberg. Automatic cre-
ation and application of texture patterns to 3d polygon maps. In Intelligent Robots
and Systems (IROS), 2013 IEEE/RSJ International Conference on, pages 3691–
3696, 2013.

11. S. Stiene and J. Hertzberg. Virtual range scan for avoiding 3d obstacles using 2d
tools. In Proc. ICAR 2009, 2009.

12. T. Wiemann, J. Hertzberg, K. Lingemann, and H. Annuth. An evaluation of open
source surface reconstruction software for robotic applications. In Proceedings of
International Conference On Advanced Robotics (ICAR 2013), 11 2013.

13. T. Wiemann, K. Lingemann, A. Nüchter, and J. Hertzberg. A toolkit for automatic
generation of polygonal maps – las vegas reconstruction. In Proceedings of the
7th German Conference on Robotics (ROBOTIK 2012), pages 446–451, München,
2012. VDE Verlag.

14. T. Wiemann, A. Nüchter, K. Lingemann, S. Stiene, and J. Hertzberg. Automatic
construction of polygonal maps from point cloud data. In IEEE International
Workshop on Safety Security and Rescue Robotics (SSRR 2010), 2010.


