
Monocular Localization in
Feature-Annotated 3D Polygon Maps

Alexander Mock1, Thomas Wiemann1,2, Joachim Hertzberg1,2

Abstract—Localization in six degrees of freedom is becoming
increasingly relevant, especially in indoor environments where
GPS is not available. To localize autonomous vehicles like UAVs in
such areas, reliable methods for self-localization with low-weight
sensors are required. In this paper, we present an approach to
precisely localize systems with monocular cameras in polygonal
3D maps annotated with keypoints and feature descriptors
computed from LiDAR data and associated reference images.
Our contribution consists of offline map computation from high
resolution 3D point clouds with corresponding reference images
as well as online localization within these maps using low cost
sensors. During localization, features extracted from the vehicle’s
camera image stream are matched against the reference map. The
proposed method is capable of real-time localization and suitable
for precise global localization. The evaluation shows comparable
results to state of the art with high re-localization accuracy.

Index Terms—LiDAR Mapping, Localization, Monocular Lo-
calization, Image Features

I. INTRODUCTION

The continuous development of SLAM algorithms allows
to generate accurate 3D point clouds using high resolution
LiDAR sensor technology. With professional laser scanning
systems, it is possible to associate the recorded points with
color information from co-calibrated RGB cameras. Such
annotated point clouds are geometrically precise, but hard to
handle on mobile robots due to the large amount of data
and missing topology between the unordered points. Hence,
using them for robotic applications other than scan matching
is seldom seen. Recently, methods to reconstruct polygonal
maps from such point clouds have become available [1].
Such maps have been successfully used for path planning [2]
and incremental localization [3] In this paper, we present
an approach to fuse geometrically precise 3D polygon maps
with keypoints and feature descriptors from the images of
the scanning system. The keypoints are projected onto the
polygonal maps and serve as landmarks for precise global
localization with low-cost cameras.

First, a polygonal reconstruction based on the point cloud
data is computed to approximate the 3D point cloud [4].

1The authors are with the Knowledge Based Systems
and Autonomous Robotics groups at the Institute of Com-
puter Science, Osnabrück University, Osnabrück, Germany
firstname.lastname@uni-osnabrueck.de

2Thomas Wiemann and Joachim Hertzberg are with the German
Research Center for Artificial Intelligence (DFKI), Niedersachsen
Lab, Plan-based Robot Control Group, Osnabrück, Germany
firstname.lastname@dfki.de

The DFKI Niedersachsen Lab (DFKI NI) is sponsored by the Ministry of
Science and Culture of Lower Saxony and the VolkswagenStiftung
978-1-6654-1213-1/21/$31.00 ©2021 IEEE

Fig. 1: Feature Annotated Polygon Map Localization (FAPM-L)
demonstrated on the EuRoC MAV Vicon room data. The polygonal
model was reconstructed from 3D point cloud data. Visual features
extracted from the corresponding images are projected onto the mesh
and stored as part of the map. This Feature Annotated Polygon Map
(FAPM) serves as reference for feature-based 6D localization (FAPM-
L) using the UAV’s camera, as indicated by the green lines.

Re-projection of the computed keypoints and descriptors via
raycasting is then used to localize keypoint positions from the
2D camera images precisely in 3D space by computing the
intersection of the rays from an inverse camera model with the
polygonal mesh. We call this representation Feature-annotated
3D Polygon Map (FAPM).

In addition to this novel representation, we present a simple
global localization approach called FAPM-L for monocular
localization using FAPMs. For that, we match feature descrip-
tors and keypoints extracted from the camera stream of a
mobile system against the previously recorded FAPM. The
main advantage of FAPM-L is that we can use the 3D infor-
mation encoded in the FAPMs as highly reliable landmarks
for feature-based localization. The FAPM-L method itself is
independent from the used keypoint extraction algorithm and
descriptors, so in principle different methods and representa-
tions can be used. Using this idea, we can use well understood
keypoint matching methods from the literature to compute
2D-3D correspondences between the extracted keypoints and
the corresponding 3D landmarks directly. Since this operation
is different from the purpose image features were initially
designed for, we evaluate different OpenCV implementations
for the use-case at hand. We further demonstrate the benefit
of precise geometric information by comparing our FAPM-L
results to the re-localization module of ORB-SLAM2 [5] on
the well known EuRoC MAV data sets [6] as illustrated in
Fig. 1.

II. RELATED WORK

For for feature-based visual SLAM various methods ex-
ist [7]. In the context of monocular visual SLAM, ORB-SLAM
and it’s variants are currently state of the art. The first version
of ORB-SLAM was introduced in 2015 by Mur-Artal et. al [8].
They designed ORB-SLAM for real-time localization. For that,
they use the comparatively fast ORB-features [9] for tracking,
mapping, re-localization and loop closing during SLAM. Their
approach consists of building graph structures like Essential
Graph, Spanning Tree and Covisibility Graph over the inserted
keyframes. Furthermore, they use a Bag of Words (BoW) [10]
approach to measure similarity in keyframes in order to
improve loop closing compared to previous approaches like
PTAM [11].

ORB-SLAM2 [5] adapted the existing ORB-SLAM imple-
mentation to support stereo and RGB-D cameras. Additionally,
it introduced a special functionality called Localization Mode
that disables Local Mapping and Loop Closing. It assumes that
an accurate map of the environment has been generated be-
forehand and that the environment did not change significantly.
Similar to our method, this global localization mode is explic-
itly indented for devices with low computational resources.
In this respect, their idea of feature-based re-localization is
similar to our approach, hence we chose it as baseline for
evaluation. However, in our work we explicitly make use of the
high accuracy of laser scanners, state of the art LiDAR SLAM
algorithms [12]–[14] and surface reconstruction methods [4]
to support the re-localization task.

Our previous work has shown that the automatic generation
of textured polygonal maps is feasible with high geometric
precision [15]. With known intrinsic and extrinsic parameters,
it is also possible to compute color textures for such maps
with chosen resolution [16]. To become independent from
user-defined parameters, we use the acquired images directly
to compute image features. These features are then back-
projected via ray-casting onto the reconstructed polygonal
surface. This computation is fast on current graphics cards
and highly precise, resulting in an accurate localization of
keypoints in continuous 3D space. In contrast to approaches
such as 2D3D-MatchNet [17], we thus compute accurately
located 3D features that can be matched directly with camera
images without further post-processing.

During matching, we compare features from high resolution
images with references from a cheap camera on a mobile
system. Hence, we need to evaluate existing features for the
intended application. For that, we created a high resolution
reference data set to evaluate SIFT [18], SURF [19], ORB [9],
and AKAZE [20] with respect to our requirements. To com-
pare our method with the state of the art, we additionally
benchmark our approach with ORB-SLAM2 on the EuRoC
MAV data sets.

III. FEATURE ANNOTATED POLYGON MAPS

This section presents the data structure and algorithms
methods to compute FAPMs. First, we very briefly describe
the polygonal map representation based on previous work.

The remaining sections concentrate on the required steps for
feature annotation.

A. Polygonal Map Creation

For map generation, we assume that we have a LiDAR
system with co-calibrated RGB-camera and known intrinsic
and extrinsic parameters, to capture point clouds and cam-
era images in a global coordinate system. Using our LVR2
software [1], [15], we compute polygonal meshes from the
captured point clouds. The polygonal mesh represents the ge-
ometric part of the FAPM and is then annotated with keypoints
and feature descriptors re-projected from the system’s camera.

B. Feature Projection

From the collected images, we extract SURF, SIFT, ORB,
and AKAZE keypoints and descriptors using OpenCV. To
make the keypoints more robust under perspective changes,
we apply the method proposed by Yu et al. [21]. It simulates
a virtual camera that points at the image from different orienta-
tions. For each of these simulated perspectives, the respective
keypoints are computed from the transformed images. The
required additional runtime for this depends on the number
of simulated camera poses. Since we are using the extracted
features as in a static map, this pre-processing overhead is
acceptable.

For Feature Projection (FP), we raycast all detected key-
points using an inverse pin hole camera model to compute
the first intersection with the polygonal model as described
in [3]. The intersection between the ray originating from
the keypoint pixel and the polygonal model results in a
precise localization of the respective keypoint in 3D space.
As we only need to re-project the extracted keypoints, this
is fast using BVH-tree structures [22]–[24]. The re-projected
keypoints and descriptors are then combined to a so called 3D
Feature consisting of geometric (3D) and image feature (2D)
information. Additionally, the geometric feature descriptor also
stores other relevant local information for re-localization like
face normals, ray direction and camera pose. The complete
list of metrics encoded in a 3D feature is shown in Tab. I.

C. Ambiguity Filtering

To ensure that only stable and unique features are integrated
into the global map, we apply a filtering step to reduce redun-
dancies and ambiguities. For that, we compare 3D features
with respect to their geometrical distance ∆p and descriptor
difference ∆d as shown in Tab. II.

TABLE I: Information encoded in a FAPM 3D feature. It consists of
3D information from the polygonal reconstruction, OpenCV keypoint
and feature descriptor.

3D Geometry 2D Feature

Point (x,y,z) Keypoint (OpenCV)
Face (id) Descriptor (OpenCV Mat)
Face normal (nx,ny,nz)
Camera pose (T)
Ray direction (rx, ry, rz)

TABLE II: Redundancy, ambiguity and uniqueness to compare two
3D features Fi and Fj with 3D position P and descriptor D.
Similarity of location and descriptor is characterized by ∆p and ∆d.

Location Descriptor Classification
|Pi ´ Pj | ă ∆p |Di ´Dj | ă ∆d

true true Redundancy
false true Ambiguity
true false Uniqueness (Perspective)
false false Uniqueness

Tab. II also shows our definitions of uniqueness and redun-
dancy. After processing an image, we match every 3D feature
against the map and filter out redundant and unstable ones. If a
feature has a similar descriptor and is projected to a similar 3D
location as an existing feature, it is classified as redundant. It
is ambiguous, if the descriptor is similar, but the localization is
not unique. If it is completely unique, it is added to the global
map. If it was projected to an existing 3D location, but differs
in the descriptor, it is added to a list of features associated
with that location, assuming the difference is due to affine
distortion. Keeping such features supports the re-localization
task, as it adds stability under perspective transformations.
Filtering is only done in geometric and descriptor space, to
make the map invariant against the image processing sequence.

This algorithm can be executed with any feature extraction
algorithm and descriptor representation. For evaluation, we
computed a global FAPM per feature type and parameteriza-
tion as separate map layer. A layer in the FAPM is the set of
all 3D features derived from a given combination of keypoint
detection algorithms and descriptor. After creating all layers,
we pre-compute one kd-tree [25] per FAPM layer to support
fast k-nearest-neighbor search during re-localization.

D. Storage

To serialize FAPM’s to permanent storage, we use the HDF5
file schema presented in [4]. In particular, each FAPM layer
is handled as a face attribute layer of the polygonal mesh map
that is strictly linked to only one instance of the geometry.

IV. FAPM LOCALIZATION

In this section, we present FAPM-L, our approach to local-
ize a camera in a previously built FAPM. Besides localization,
FAPM-L is also able to refine an existing map by adding
additional stable features detected during localization. The
general layout of our processing pipeline is shown in Fig. 2
and described in detail in the following sections.

A. Feature Extraction and Parametrization

In the first step of the localization stage, we compute image
features on every incoming image. The only restriction to the
type of image feature is that its descriptor can be matched
to a map layer. In our experiments we analyzed SIFT, SURF,
ORB and AKAZE features for their compatibility with our
map structure.

Fig. 2: The proposed FAPM-L pipeline consists of feature extraction
from camera images, continuous matching against the reference
FAPM and a PnP solver for localization (green). During FAPM-L,
ambiguities are detected to refine the map (red).

B. Feature Matching

The main task of the ContinuousMatcher is to match the
extracted 2D features of a camera image to the 3D features
of the FAPM using the pre-computed kd-trees. The resulting
set of 2D-3D feature matches is then filtered according to
a maximum distance in descriptor space, to consider only
matches with high similarity. 2D features that belong to the
other set of matches, are features that are not yet registered
in the FAPM. Initially, we reject them for matching but put
them aside for later map extension. After that, we apply a
second filter that compares matches of two consecutive image
frames, and the matches of these two images with the FAPM
respectively. The first part of matching two sets of 2D features
is a commonly used technique to stabilize the matching results
in an image stream. For this, we build matches between these
two sets by first searching the most similar descriptors of the
first image in the second image and then the other way around.
If the descriptors of these matches are similar and each of this
search directions lead to the same match, we consider it as
stable feature match. By matching two features, we inevitably
assign them to the exact same point in the world, even if
the 3D coordinates of that point stay unknown. With our
approach, we take advantage of the already known 3D location
and descriptor of that one instance stored in the FAPM. In
particular, we can discard 2D and 3D features that belong to
certain impossible matching constellations. On the one hand,
we are able to reject matches where the responsible pixels
point to different instances in the map. On the other hand,
two pixels of two images matched to the same instance in the
FAPM but were not matched to each other can be rejected as
well. In total, the ContinuousMatcher only considers matches
that build a triangle as depicted in Fig. 3. This allows us
to filter out more wrong matches than using only 2D to
2D filtering methods, while also tracking the matched 3D
coordinates of the 2D features over time.

Besides the main task of matching, the ContinuousMatcher
also checks if the map consists of ambiguous features. For each
2D keypoint, we search the FAPM for the k closest descriptors.
Next, we iterate over the k corresponding 3D features until two
consecutive 3D features meet the ambiguity condition defined
in Tab. II. In this case, the ContinuousMatcher informs the

1

FAPM

tt-1

1 2

0

FAPM

tt-1

1

0 23

FAPM

tt-1

20 3

Fig. 3: Three possible combinations of matches between frame t,
frame t ´ 1 and the FAPM. Purple: Example set of descriptors.

MapUpdater about this ambiguity and discards the match.
After that, the remaining set of matches consists of multiple
2D image pixels and 3D map points. These 3D-2D point
correspondences are then used to estimate the camera’s pose.

C. Pose Estimation

The next task is to estimate the pose of the calibrated camera
given a set of n 3D points in the FAPM and corresponding
n 2D projections in the image. OpenCV already implements
solutions for such Perspective-n-Point (PnP) problems. They
can be distinguished into analytical solutions and nonlinear
optimization solvers. Analytical solutions like P3P [26] or
EPNP [27] find an optimal solution directly. The nonlinear op-
timization solver minimizes the re-projection error iteratively
and is based on the Levenberg-Marquardt algorithm [28].
Depending on the initial guess, this method tends to converge
to local minima. During continuous pose estimation, we can
take advantage of this characteristic. As soon as the filter
algorithm fails, ambiguities or less informative features remain
in the FAPM. To clarify, lets consider we have a world
of two instances of one object. When pointing the camera
to one of these instances, we can detect the correct object
but hardly the correct instance. If we detect features in the
camera image and match them to the world, this could result
in matches targeting both of the world’s object instances.
Consequently, the minimization problem would consist of at
least two possible minima. In this case, we preferably choose
the local minimum near the last pose estimation over the global
minimum far away.

Accordingly, setting the solving parameters of the minimiza-
tion appropriately, decreases the sensitivity to false matches.
Furthermore, we use RANSAC [29] to detect the remaining
false correspondences that have been neglected by the previous
filter strategies. It returns the set of inliers that were respon-
sible for the resulting pose estimation as well as the outliers.
Combining the number of inliers with the re-projection error,
we can make assumptions about the solution’s accuracy. In
particular, we assume a higher pose quality with a higher
number of inlier detected by RANSAC and a lower quality
with a higher mean re-projection error. To asses this quality,
we use the ratio Q “ Ninlier{Ērepr. This ratio should be
high for successfully matched images against the FAPM, and
low for wrong matches. For our applications, we search for
a Q-threshold that determines if the system is well localized.
In subsequent experiments, we will empirically determine this
threshold by comparing Q to the computed localization error.

In total, we propose two different methods to solve the PnP
problem depending on the localization state. If the robot is
localized, we use the iterative method from OpenCV with a
low number of iterations. This LocalPnPSolver finds locally
minimal solutions with respect to the previous pose estima-
tion. Otherwise we choose the so called GlobalPnPSolver. It
first computes the solution using an analytical solver. If the
solution indicates that the robot is not localized, it performs
an additional search with the iterative minimizing approach.
In this case, we invest more time in finding an solution by
setting a high number of iterations.

D. Map Update

The MapUpdate mechanism is concurrently executed to the
localization process and handles all necessary map changes.
Map changes can be one of the following three actions: Add,
Remove and Refine. Some of these actions are triggered if
certain conditions are met by the result of the localization
stage. At the beginning of the localization process, features
were filtered out, for which no similar features could be found
in the map. Accordingly, this features hold information about
the environment that has not been recorded in the FAPM yet.
Therefore, once the pose estimation is valid, these features
will be appended to a list possible additions to the map. This
list of 2D features will later be added to the FAPM through
Feature Projection. Furthermore, during localization, match
filters detect ambiguous 3D features in the map as described
in Tab. II. As long as the localization gives valid results, the
RANSAC algorithm will generate a list of outlier matches,
which probably are false matches. Their 3D features in the
FAPM are therefore ambiguous and marked to be removed.
We determine the order of removal by descendingly sorting the
outlier matches by their re-projection error. Both the RANSAC
outliers and the ambiguities are added to a list of possible
removals. Each of the RANSAC inliers 2D features are added
to the map through Feature Projection. By this, the added
3D feature should refine one existing 3D feature by adding
a descriptor recorded from a slightly different perspective to
the same 3D location. At this point, the MapUpdate stage
contains a list of additions and removals. For each addition
and removal the kd-tree needs to be restructured. Therefore,
we first buffer those changes until we reach a pre-defined
number of changes that triggers the map update. This update
scheme maintains and optimizes a set of stable features in
the FAPM to handle visual changes in the environment. For
example, if visual elements, such as portraits or posters, are
added to a particular wall, this thread extends the map with
the additional features from the new objects. The other way
around, our system detects removed objects as well and adjusts
the map through removal of the respective features.

V. EVALUATION

In this section we evaluate the previously described local-
ization approach. For this, we use two data sets: a set of high
resolution laser scans taken with a RieglVZ400i and Nikon
500d camera with 24 mega pixel resolution. Using this high

Fig. 4: Evaluated data sets. Left: The high resolution UOS data set with computed ground truth camera poses. Right: Polygonal reconstruction
on the lower resolute EuRoC MAV Vicon room data set (top) and projected features (bottom). The ellipsoids of the features correspond to
the face formals of the underlying triangles as part of the FAPM 3D features.

resolution reference, we investigate several feature types with
respect to their reliability in global matching and analyze the
runtime of our system. From that, we determine the optimal
feature algorithms and parameters for the localization system.
The final section describes an evaluation of the matching
approach itself on the well known EuRoC MAV data sets and
compares our accuracy to ORB-SLAM2 in localization mode.

A. UOS-Lab data set

For this reference data set, we registered the scans from the
Riegl laser scanner manually. The laser scanner provides point
clouds with millimeter precision and a precise co-calibration
of the system’s high resolution camera. The accurately re-
constructed polygonal maps for this evaluation have been
verified as described in [15] and are shown on Fig. 4. After
reconstruction, we raycasted different type of keypoints and
descriptors to project them on the surface in order to obtain
multiple FAPM layers of the same environment. For filtering
ambiguities we set the respective parameters to ∆p “ 0.02
and ∆d “ 5.

For the localization part, we used a camera stream recorded
with a Parrot Bebop 2 UAV. We reconstructed the ground-truth
camera movement trajectory by manually labeling the pixels of
the scan images and the video frames that represent the same
real world location carefully with pixel accuracy. Then, the
pixels of each scan image label were raycasted to the mesh to
determine their 3D position. In each video frame, the labeled
pixels of the video stream were then matched to the same
named scan image labels to obtain 3D-2D correspondences.
To further reduce errors, we assured to have at least 15
correspondences per frame. For each of the reference frames,
we then computed the camera’s pose by solving the PnP
problem. The resulting ground-truth trajectory consists of 810
poses.

B. Parameters

We used the ground-truth trajectory and the drone video
infer optimal parameters for FAPM-L localization. Parameter-
ization requires to find the optimal feature type and an intrinsic
metric to assess the quality of the resulting pose. For that, we
analyzed several types of image features with respect to their
compatibility for matching features from cameras of different
resolutions at different poses. In more detail, we evaluated,
which type of image feature is most invariant against highly
differing image resolutions of two completely different cam-
era systems. In this part of the evaluation, we disabled the
MapUpdater to evaluate the matching of the drone’s images
to the initial map only. To quantify their usability, we used the
number of inliers per filtered matches as metric. The results for
AKAZE, ORB, SIFT and SURF are shown in the left graph
in Fig. 5. It indicates that AKAZE outperforms ORB, SIFT
and SURF in terms of global matching in this scenario.

To analyze the accuracy of our FAPM approach on the
ground truth data, we consequently used AKAZE in the
following evaluation. First, we compared the reported FAPM-
L poses to the ground truth poses from manual labeling.
From our implementation, we obtain the of number of initial,
filtered, and inlier matches as well as the mean re-projection
error of the inliers. The re-projection error is computed by the
Euclidean distance of the projected inlier to the correspond-
ing pixel. In addition, we compute the quality metric Q as
described in the previous section. The results are plotted in
the left graph of Fig. 5.

It shows that the intrinsic quality metric Q is inversely
related to the estimated pose’s error: high quality relates to
a low error and vise-versa. That means, we can infer the pose
estimation’s accuracy from Q without knowing the explicit
error to the ground truth. For further experiments, we decided
that global localization is “good enough” if Q ą 0.2. Note: At

 0

 100

 200

 300

 400

 500

 600

 700

 0 0.05 0.1 0.15 0.2 0.25

N
u
m

b
e
r

o
f

fr
a
m

e
s

Minimum inlier/matches

AKAZE
ORB
SIFT

SURF

.1

.2

.3

.4

.5

.6

.7

.8

.9

 0
 0 100 200 300 400 500 600 700 800

Lo
ca

liz
a
ti

o
n
 E

rr
o
r

[m
]

/
M

e
tr

ic
 v

a
lu

e

Video Frame

Localization error
Intrinsic quality metric Q

Fig. 5: The parameter evaluation consists of finding the optimal
feature type and an intrinsic metric for estimating the quality of the
resulting pose.

this stage, we also considered the localization error caused by
computing time. Therefore, the accuracy differs to subsequent
experiments.

C. Runtime

In this section we analyze the runtime for matching different
image features with the FAPM as shown in Fig. 7. It illustrates
that the runtime logarithmically increases with the overall size
of the FAPM, which allows to represent large environments.
Fig. 7 depicts the total runtime of the localization that was
used in Fig. 5. Here, the FAPM consists of 73 650 3D AKAZE
features. The results show that using AKAZE leads latency of
400 ms between image acquisition and localization.

D. Accuracy

In this section we compare the accuracy of FAPM-L to
ORB-SLAM2 (stereo) on the EuRoC MAV data sets [6]. In
particular, we use the six Vicon Room data sets, as they include
3D scans of the environment. In contrast to our manually
created UOS-Lab data set, these data sets do not consist of two
different sensor systems. But we are able to use the UAV’s first
camera combined with the ground truth estimate to produce the
FAPM. Afterwards, we use the second camera to estimate the
pose in the FAPM via FAPM-L. Consequently, we demonstrate
to what extent the precise LiDAR measurements affects the
localization accuracy instead of evaluating the quality of 2D-
3D matching here.

Fig. 6 shows that successful matching against the FAPM
occurs rarely. However, between these events, it is possible
to extrapolate the trajectory. In our experiments, we im-
plemented a simple camera-based pose extrapolation. After
global localization, it generates a local FAPM with respect
to the global estimated pose. The next frame of the camera
is matched against this local FAPM to obtain a relative pose
estimation with respect to the last frame and consequently a
new guess. This procedure continues until the next successful
global localization event. Of course, this relative localization
naturally leads to high error propagation. However, the global
localization with FAPM-L corrects the high drift regularly and
precisely as illustrated in Fig. 6.

TABLE III: RMSE comparison between ORB-SLAM2 (stereo) and
our FAPM Localization (FAPM-L). No. FAPM-L reports the number
of frames, where global localization has been successful.

EuRoC ORB-SLAM2 FAPM-L No. FAPM-L
data set RMSE (m) MSE (m)

V101 0.035 0.0246 65
V102 0.02 0.0066 76
V103 0.048 0.0084 48
V201 0.037 0.0045 20
V202 0.035 0.0008 22
V203 - 0.0008 34

For each of the Vicon Room data sets we analyzed the
accuracy of the global pose estimation through root mean
squared error (RMSE) computation, as FAPM-L and the ORB-
SLAM2 (stereo) are scaled correctly. The results are depicted
in Tab. III. In these experiments, the global FAPM-L pose
estimations within the FAPM are more accurate then ORB-
SLAM2. However, the frequency of correct matches is low
compared to ORB-SLAM2, which integrates all subsequent
frames.

VI. CONCLUSION

We introduced an environmental map representation for
mobile robotics called FAPM. The novelty of this representa-
tion is that we combine LiDAR-based polygonal meshes with
different types of image features. The projection of the features
in 3D space using raycasting and the calibration parameters of
the scanning systems results in a highly accurate localization
of the features in 3D space. We used these FAPMs successfully
to localize a UAV equipped with a low resolution camera
in them. In our experiments, we analyzed various features
for compatibility with our approach. We introduced a metric
that assesses the quality of the pose estimation by intrinsic
information derived from the localization process. From that,
we determined the parameterization for the best-evaluated
AKAZE algorithm. With these, we were able to positively
evaluate our method on EuRoC MAV data sets against ORB-
SLAM2. The results showed that our method re-localizes with
lower frequency but higher accuracy. The bottleneck in the
current implementation is the comparatively high runtime.
Future work will focus on improving the runtime and stability
of the existing FAPM-L approach. For this, we propose to
combine the relative localization of ORB-SLAM2 with our
global FAPM-L appropriately. Furthermore, we plan to remove
the remaining ambiguities by handling the robots state in a
multi-modal probabilistic manner using particle filters.

REFERENCES

[1] T. Wiemann, I. Mitschke, A. Mock, and J. Hertzberg, “Surface recon-
struction from arbitrarily large point clouds,” in 2018 IEEE International
Conference on Robotic Computing (IRC), 2018, pp. 278–281.

[2] S. Pütz, T. Wiemann, M. Kleine Piening, and J. Hertzberg, “Continuous
shortest path vector field navigation on 3d triangular meshes for mo-
bile robots,” in 2021 IEEE International Conference on Robotics and
Automation (ICRA), 2021.

-4

-3

-2

-1

 0

 1

 2

 3

-1 0 1 2 3 4

X
[m

]

Y[m]

Groundtruth
FAPM Localization

 0

 0.5

 1

 1.5

 2

 2.5

 0 200 400 600 800 1000

Lo
ca

liz
a
ti

o
n
 E

rr
o
r

[m
][

q
d
]

Frame No.

Translation Error
Rotation Error

Global Localization

Fig. 6: FAPM localization trajectory and accuracy on the EuRoC MAV data set V201.

 0

 0.5

 1

 1.5

 2

 2.5

 0 2 4 6 8 10 12 14

M
a
tc

h
in

g
 t

im
e
 /

 1
0

0
 f

e
a
tu

re
s

(m
s)

Map size (x*1000 features)

AKAZE
ORB
SIFT

SURF

.1

.2

.3

.4

.5

 0
 0 100 200 300 400 500 600 700

R
u
n
ti

m
e
 [

s]

Frame No.

Pose Estimation
Matching

Feature Extraction

Fig. 7: Empirical analysis of the runtime to match the 5 closest
features of the FAPM (left) and of FAPM localization time per frame
(right) with AKAZE features using an Intel i7-7700 CPU.

[3] J. Wülfing, J. Hertzberg, K. Lingemann, A. Nüchter, T. Wiemann, and
S. Stiene, “Towards real time robot 6d localization in a polygonal indoor
map based on 3d tof camera data,” IFAC Proceedings Volumes, vol. 43,
no. 16, pp. 91–96, 2010.

[4] T. Wiemann, F. Igelbrink, S. Pütz, and J. Hertzberg, “A file structure
and reference data set for high resolution hyperspectral 3d point clouds,”
IFAC-PapersOnLine, vol. 52, no. 8, pp. 403–408, 2019.

[5] R. Mur-Artal and J. D. Tardós, “Orb-slam2: An open-source slam
system for monocular, stereo, and rgb-d cameras,” IEEE transactions
on robotics, vol. 33, no. 5, pp. 1255–1262, 2017.

[6] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari, M. W.
Achtelik, and R. Siegwart, “The euroc micro aerial vehicle datasets,” J.
of Robotics Research, vol. 35, no. 10, pp. 1157–1163, 2016.

[7] R. Azzam, T. Taha, S. Huang, and Y. Zweiri, “Feature-based visual
simultaneous localization and mapping: a survey,” SN Applied Sciences,
vol. 2, no. 2, pp. 1–24, 2020.

[8] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “Orb-slam: a versatile
and accurate monocular slam system,” IEEE transactions on robotics,
vol. 31, no. 5, pp. 1147–1163, 2015.

[9] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: An efficient
alternative to sift or surf,” in 2011 International Conference on Computer
Vision, Nov 2011, pp. 2564–2571.

[10] D. Galvez-López and J. D. Tardós, “Bags of binary words for fast
place recognition in image sequences,” IEEE Transactions on Robotics,
vol. 28, no. 5, pp. 1188–1197, Oct 2012.

[11] G. Klein and D. Murray, “Parallel tracking and mapping for small AR
workspaces,” in Proc. Sixth IEEE and ACM International Symposium
on Mixed and Augmented Reality (ISMAR’07), November 2007.

[12] J. Zhang and S. Singh, “Loam: Lidar odometry and mapping in real-
time.” in Robotics: Science and Systems, vol. 2, no. 9, 2014.

[13] D. Droeschel and S. Behnke, “Efficient continuous-time slam for 3d

lidar-based online mapping,” in 2018 IEEE International Conference on
Robotics and Automation (ICRA), 2018, pp. 1–9.

[14] W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-time loop closure
in 2d lidar slam,” in 2016 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2016, pp. 1271–1278.

[15] T. Wiemann, H. Annuth, K. Lingemann, and J. Hertzberg, “An extended
evaluation of open source surface reconstruction software for robotic
applications,” Journal of Intelligent & Robotic Systems, vol. 77, no. 1,
pp. 149–170, 2015.

[16] A. Mock, T. Wiemann, D. Borrmann, T. Igelbrink, and J. Hertzberg,
“Real time texture generation in optimized large-scale polygon meshes
with kinectfusion,” in Proceedings of ISR 2016: 47st International
Symposium on Robotics. VDE, 2016, pp. 1–7.

[17] M. Feng, S. Hu, M. H. Ang, and G. H. Lee, “2d3d-matchnet: Learning
to match keypoints across 2d image and 3d point cloud,” in 2019
International Conference on Robotics and Automation (ICRA). IEEE,
2019, pp. 4790–4796.

[18] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
Int. J. Comput. Vision, vol. 60, no. 2, pp. 91–110, Nov. 2004.

[19] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust
features,” in European conference on computer vision. Springer, 2006,
pp. 404–417.

[20] P. F. Alcantarilla and T. Solutions, “Fast explicit diffusion for accelerated
features in nonlinear scale spaces,” IEEE Trans. Patt. Anal. Mach. Intell,
vol. 34, no. 7, pp. 1281–1298, 2011.

[21] G. Yu and J.-M. Morel, “Asift: An algorithm for fully affine invariant
comparison,” Image Processing On Line, vol. 1, pp. 11–38, 2011.

[22] D. Baldwin and M. Weber, “Fast ray-triangle intersections by coordinate
transformation,” Journal of Computer Graphics Techniques (JCGT),
vol. 5, no. 3, pp. 39–49, September 2016.

[23] R. Torres, P. J. Martı́n, and A. Gavilanes, “Ray casting using a roped
bvh with cuda,” in Proc. 25th Spring Conference on Computer Graphics,
2009, pp. 95–102.

[24] T. Möller and B. Trumbore, “Fast, minimum storage ray-triangle inter-
section,” J. Graph. Tools, vol. 2, no. 1, pp. 21–28, Oct. 1997.

[25] M. Muja and D. G. Lowe, “Scalable nearest neighbor algorithms for
high dimensional data,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. 36, 2014.

[26] L. Quan and Z. Lan, “Linear n-point camera pose determination,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 21,
no. 8, pp. 774–780, Aug 1999.

[27] V. Lepetit, F. Moreno-Noguer, and P. Fua, “Epnp: An accurate o(n)
solution to the pnp problem,” International Journal of Computer Vision,
vol. 81, no. 2, p. 155, Jul 2008.

[28] D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear
parameters,” SIAM Journal on Applied Mathematics, vol. 11, no. 2, pp.
431–441, 1963.

[29] M. A. Fischler and R. C. Bolles, “Random sample consensus: A
paradigm for model fitting with applications to image analysis and
automated cartography,” Commun. ACM, vol. 24, no. 6, pp. 381–395,
Jun. 1981.

	Introduction
	Related Work
	Feature Annotated Polygon Maps
	Polygonal Map Creation
	Feature Projection
	Ambiguity Filtering
	Storage

	FAPM Localization
	Feature Extraction and Parametrization
	Feature Matching
	Pose Estimation
	Map Update

	Evaluation
	UOS-Lab data set
	Parameters
	Runtime
	Accuracy

	Conclusion
	References

