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Abstract—Polygonal maps for robotic applications are be-
coming increasingly popular, but are currently not effectively
supported in the Robot Operating System (ROS). In this paper,
we introduce the Mesh Tools package consisting of message
definitions, RViz plugins and a persistence layer to make the
benefits of annotated polygonal maps available in ROS. These
tools allow to publish, edit and inspect such maps within the
existing ROS context. Our persistence layer efficiently loads and
stores large mesh maps. We discuss two application areas as
a proof-of-concept: Labeling of triangle clusters for semantic
mapping and robot navigation on triangle meshes in a typical
outdoor environment by integrating our tools into an existing
navigation stack.

I. INTRODUCTION

Recently, the rapid enhancement in 3D sensor technology
has led to the development of effective 3D mapping algo-
rithms. Matching 3D point clouds or RGB-D data is the basis
for state of the art SLAM algorithms to generate high resolu-
tion point clouds of large environments in short time. Using
point clouds for robotic purposes other than scan matching
is seldom seen, as they have several drawbacks like missing
topology between points, presence of noise and no continuous
surface representation. These drawbacks can be overcome by
using the raw sensor data to derive other representations like
octrees that can be used as robot maps. Such octrees - although
easy to compute and relatively memory efficient - deliver
only a discrete, voxel-based representation. Regarding con-
tinuous representations, polygonal meshes are state of the art.
With the introduction of efficient polygonalization algorithms
like Kinect Fusion or our own Las Vegas Reconstruction
Toolkit [14], automatic generation of such maps from point
cloud data has become feasible for real life applications.

ROS is currently the de-facto standard framework for de-
velopment of state of the art robotic software. It is used
by a number of universities and companies and provides a
complete infrastructure for different applications including
mapping, path planning and visualization. In recent years,
some new map representations and approaches were designed
and developed along with corresponding ROS packages. Most
of these state-of-the art solutions focus on 2D scenarios. In
this paper, we add the missing ROS infrastructure to make
3D meshes available as 3D environment representations within
ROS. This includes the definition of new messages to represent

semantically annotated 3D meshes, plugins for RViz to render
such meshes – including textures – and a new file format
that supports efficient storage of such meshes. An example
for using RViz to visualize a point cloud together with an
annotated mesh is shown in Fig. 1.

II. RELATED WORK

For typical flat environments, the Costmap 2D has proven
to be a reliable representation for robot navigation in 2D [9].
A Costmap 2D stores values as arrays of unsigned characters.
Occupancy cells are usually expressed by the respective values
for Occupied, Free, and Unknown. Due to the 1-byte restriction
per cell, the expressiveness of such maps is limited. These
simple occupancy maps have been enhanced by layered cost
maps [8], which allow to encode more detailed information
than just occupancy.

A straight-forward extension of such maps are so-called
2.5D grid maps, which also encode local height with respect
to a given reference level. The Grid Map library overcomes
the Costmap 2D shortcomings by storing values in a stack of
matrices of float values. The Grid Map package comes along
with visualization plugins for RViz and message definitions
and allow easy conversion to OpenCV images [3].

These pseudo-3D representations inherit the benefits of 2D
occupancy grid maps, e.g. structure and constant access time,
but they also allow to express heights, variances, curvature
etc. In addition to this benefits the Grid Map library uses
a 2D ring buffer to efficiently move data in an azimuthal
centric fashion around the robot when it moves to reduce
the memory footprint. The main drawback of such grid-based
maps is that they can not model multi level environments,
e.g., multi-story buildings, stairwells, underpasses, bridges, or
overhanging structures. Furthermore, information gets lost if
3D is projected onto 2D.

To model environments in full 3D, octree representations
are currently state of the art. In ROS, the most popular
octree representation is OctoMap [7], which also provides
means to visualize 3D voxel maps. OctoMap represents a
map as 3D octree, where voxels (the octree leafs) indicate
the corresponding space as occupied, whereas the space for
non existing sub-trees or voxels is understood as free space.
Octrees have several strengths, e.g., dynamic expansion, level



Fig. 1: RViz with loaded plugin and 3D mesh map

of detail support via definition of maximum octree levels,
efficient querying and evaluation of regions in terms of free or
occupied. However, octrees are discretized and they implicitly
do not model a continuous surface.

The SkiMap approach [6] tries optimize the access time of
octrees by proposing a skip list approach, which maintains
such lists in a three layer tree, where each layer represents
one dimension of 3D space. Each tree node stores a list of
sorted linked skip lists, which can be accessed in a binary
search fashion. As the other approaches, SkiMap is integrated
with ROS nodes and provides a ready to use ROS interface.

Making annotations and adding extra information to a 3D
map is often done by using interactive markers [5] or adding an
extra layer. These markers are usually not part of the internal
representation, but are added as an additional overlay with
added information to the chosen map format. Towards more
general solutions in the context of semantic mapping, this
fact limits their usability as integral part of the map. For a
general semantic mapping approach, these annotations should
be part of the map itself. To represent arbitrary geometries
with semantic annotations, a 3D spatial representation has to
be defined that serves as a basis for grounding object classes
and instances geometrically. It should be able to incorporate
information from different modalities consistently into the 3D
representation and be scalable to represent large environments
efficiently. In previous work, we have shown that it is feasible
to generate such representations from 3D point cloud data in
short time [14]. Additionally, these full 3D polygonal maps
allow to generate 2D or 2.5D maps and semantic knowledge
can be integrated in to the projection, e.g. for navigational
planning [2].

In this paper, we introduce the infrastructure to make the
benefits of such maps available within ROS. This infrastructure
is freely available in our Mesh Tools1 bundle. The Mesh Tools
contain interdependent packages and tools to visualize and
transform meshes and to make semantic annotations. The tools
builds on top of our mesh msgs message definitions for using
such maps in ROS and offers a persistence layer to save
and load annotated 3D meshes in HDF5 files. This 3D map
file layout overcomes the ROS bag size limits and delivers a
compact representation that is able to store meshes, cost layers,

1https://github.com/uos/mesh tools

metrics, and annotations in a single file.
In the following sections we present the basic structure of

this package, explain the basics of the underlying message
definitions and give a navigation application example. In this
navigation application example we use Move Base Flex [10],
as a general map independent flexible navigation framework
which allows to use the same control sequences and well
known task execution control tools like SMACH [1].

III. MESH TOOLS FOR ROS AND RVIZ

In this section, we discuss the general structure of our Mesh
Tools software. Details on the respective packages are given
in the following sub-sections.

A. Package Structure

The messages required to send meshes and corresponding
attributes, e.g., textures, vertex costs, face costs, colors or
cluster labels from one node to another are defined in the sub-
package mesh msgs. These message definitions are designed
to be modular and aim to reduce possible overheads resulting
from duplicate definitions or unnecessary re-posts of already
sent messages. To transform a mesh from one coordinate frame
into another with ROS’ internal tf system, we implemented the
mesh msgs transform package. The label manager handles
the generation and conversion of annotated parts of the mesh
maps. Labeled maps generated with this tools can be serialized
into HDF5 files [4]. The proposed structure in this container is
a direct extension of the point cloud format described in [12].
Besides the general benefits of HDF5 like lazy-loading, com-
pression and large file support, using this general meta-format
also allows to store the derived maps together with the initial
sensor data. All HDF5-related functionality is implemented
in the mesh msgs hdf5 package, which reads mesh data and
attributes from our HDF5 files and converts them into mesh
messages for deployment in ROS. Consequently, it also stores
received messages after conversion in the configured HDF5
file.

B. Message Definitions

The dedicated ROS messages strictly divide between a
mesh’s geometry, associated attributes, material definitions,
and texture information. The annotations and textures are
linked to the geometry via unique IDs (UUIDs). This structure
enables passing the geometry without attributes to RViz and
other nodes. This strict separation allows to design special
nodes that can add specific attributes afterwards to support
bottom-up approaches for label generation. For example, the
user can design a node that computes the trafficability within a
certain area based on the received geometry. After computation
– which may take some time – the calculated costs can
then be send to other nodes in form of attributes to the
initial mesh without having to send the geometry information
again. Linking of the respective data is done via the UUIDs
of the mesh geometries. The layers can then be selected
by the user and visualized independently by coloring the
corresponding costs via pre-defined color gradients. In the



(a) RViz TexturedMesh plugin display (b) RViz Map3D plugin display

(c) TextturedMesh RViz plugin configuration panel (d) Map3D RViz plugin configuration panel

Fig. 2: The Mesh Tools RViz plugins TexturedMesh and Map3D configuration panels.

following paragraphs we give an overview on most important
mesh messages:
MeshGeometry (Stamped) Defines the geometric structure

of a triangle mesh using an array of vectors, by representing
vertices in R3, corresponding normal vectors and an array
of indices, where three indices each define a triangle by
referring to the array of vertices (vertex and index buffer).

MeshVertexColors (Stamped) Colors for the vertices are
represented by an array of std msgs/ColorRGBA and linked
to a corresponding mesh by a string representing a UUID.

MeshVertexCosts (Stamped) Vertex costs are defined by an
array of floats defining cost values for each vertex. A type
attribute can be used to associate the costs with a meaning,
e.g., roughness, variation, height differences, etc. An UUID
refers the cost information to a corresponding mesh.

MeshClusterLabel A Cluster label message groups triangles
/ faces to a set or cluster by referring to their IDs. The cluster
is associated to a mesh using the UUID of a corresponding
mesh. An optional cluster label can be assigned to provide a
semantic label or reference.

MeshTexture A texture message refers to an Image of the
message type sensor msgs/Image and is associated with a
mesh msgs/MeshMaterial using an ID.

MeshMaterial A material is defined by a Color

(std msgs/ColorRGBA) and an optional texture ID, referring
to a mesh msgs/MeshTexture.

MeshVertexTexCoords Defines a texture coordinate
which refers to a pixel of a corresponding image in
mesh msgs/MeshTexture.

MeshMaterials (Stamped) Combining materials with texture
coordinates and clusters of a corresponding mesh

MeshFeature Mesh features attributes are designed to ground
images-based features in textures to a 3D position on a
surface via a feature descriptor. We plan to use these for
future applications for camera-based localization in textured
meshes.

MeshFeatures List of features for a corresponding mesh.
The plugins for visualization and user-interaction are imple-

mented using RViz’s plugin API. Since RViz internally uses
OGRE 3D we had to stick to this library for rendering 3D
objects. Unfortunately, OGRE 3D’s performance is limited
for large meshes. However, we were able to implement the
basic requirements within RViz with custom-extensions to
realize different rendering modes, including lighting support,
textured color materials and wire-frame. The supported modes
are selectable based on availability in RViz’s tree view.

In addition to static rendering, we developed an interactive
pose selection tool to allow setting poses in RViz on the mesh



surface. In this paper we used this feature to define goal
poses for our path planning example. Semantic information
can be added via interactive labeling in the viewer. For
this, we implemented a selection tool that can either select
single triangles or larger clusters of triangles via a rubber-
band selection recangle. After selection, these triangles can
be grouped as an dedicated cluster that is labeled with a
user-defined attribute string or in internal ID. To demonstrate
the usability of this tool, we added additional screenshot and
demonstration videos to the provided supplementary material
to this paper.

Fig. 2c shows the TexturedMesh plugin panel to configure
topics and visualization parameters. The Display Type can
be configured to Fixed Color, Vertex Color, Vertex Costs, or
Texture. Here, Vertex Costs is configured as Display Type and
in the drop-down menu the roughness layer is selected as
Vertex Costs Type which results in displaying the roughness
vertex costs using the selected color scheme in the configured
value limits. Some different configurations and layer cost
types are shown in Fig. 2b. It shows a typical outdoor
environment mesh reconstructed from a recorded point cloud
from a top down viewpoint. In this example the Mesh Tools
can efficiently display the computed metrics on the surface
send to the described TexturedMesh RViz plugin using the
described mesh msgs/MeshVertexCostsStamped. The function-
ality is briefly shown in 2.

The MeshGoal Tool provides the possibility to
select a geometry msgs/PoseStamped on the surface of the
mesh. In analogy to 2D maps like Costmap 2D, the possibility
to set a goal pose on the 3D surface of the mesh is essential to
interact within the recorded environment, e.g., picking a user
defined goal pose for robot navigation. The pose setting is
performed in two steps: First, by clicking and holding (mouse
down event) somewhere on the mesh a ray face intersection
is computed and the position of the intersection point is
used as the 3D pose’s position. Second, the normal vector
of the intersecting face is used to define a plane with the
support vector. By moving the cursor (mouse down) around
the intersection position a arrow is defined. It is oriented
in the computed plane and starts on the intersection point
pointing to the current cursor position with a fixed length. This
vector is then converted into an orientation quaternion with
respect to the mesh’s frame. The intersection position vector
and the orientation quaternion then define a full 6D pose.
This is published as geometry msgs/PoseStamped to a topic
which can be modified in the tool properties. The interaction
and pose selection is shown in in video in combination with
the TexturedMesh plugin and a simple path planning scenario
using a Dijkstra-based planning approach 3.

The Map3D configuration panel is shown in Fig. 2d. It was
loaded from a HDF5 map file that contained a mesh with
its attributes and labeled faces as described in Sec. III-C).
The plugin works together with the ClusterLabel Tool and a

2https://youtu.be/ir4kZif5FS8
3https://youtu.be/X TXC9hrAgo

Mesh Display and Cluster Label Display. The Mesh Display
displays labeled faces and can be configured in the same
way as the TexturedMesh plugin. Configuration can be done
using the provided input widgets in the blue subgroup Mesh
of the Mesh3D object. The Mesh subgroup configures a
ClusterLabel Display, which displays labeled clusters. The
ClusterLabel Tool enables labeling of certain faces
using different selection and de-selection methods. The label
and its color can be configured as shown in Fig. 2d. The
ClusterLanel Panel allows to manage the clusters and label
names as well as the corresponding colors. Usage of this tool
is demonstrated in detail in4.

The Cluster Label tool can be used to label clusters of
faces with a user defined class in real time. One major
problem with the previous implementation based on the native
OGRE data structures was huge lag in performance when
selecting a face using OGREs ray casting implementation.
To address this issue, we provide a custom implementation
that reduced the selection time from 10 seconds per triangle
(OGRE) to 125 ms in our implementation on the presented
reference mesh. Instead of re-sending the whole vertex and
index buffer to the graphical card each time a face was marked
or labeled, we created a data structure which persistently holds
all vertex data on the graphical card. Instead of using Ogre’s
ManualObject the plugin now uses a mesh represented in our
data structure.. The creation of such an object admittedly is
more complex, since all data has to be set by hand in the
enhanced implementation. On the other hand, this approach
gives us the ability to create sub meshes of the current loaded
mesh. These sub meshes refer to the same global vertex buffer
that was already loaded to graphics card when the object
was created. When the user interacts with the triangle mesh,
only the affected index buffers need to be added or updated
when faces are marked and added to a cluster. This reduces to
communication overhead significantly and increases rendering
performance.

The biggest performance boost however was obtained by
enhancing the intersection computation between the mouse
click position and the loaded mesh. Instead of checking all
triangles sequentially, we implemented a bounding volume hi-
erarchy (BVH) tree in OpenCL. This BVH structure speeds up
the required ray-casting operations significantly by supporting
parallel intersection computations over all faces. Due to this
BVH-based pre-sorting of the vertices, we also decrease the
cache miss rate, which also drastically improves performance.
Using the brush and rectangle selection tool, the time for
cluster generation could be dropped to 200 ms to 150 ms,
which is sufficient for a seamless user experience.

C. Persinstant Storage

Besides the messages and user interaction and rendering
tools described above, we store all meshes and derived clusters
into a dedicated persistence layer. Here, we extend the HDF5
storage structure of our reference data set [12] to support

4https://youtu.be/8n4737D2abM



Fig. 3: HDF5 file structure to represent textured triangle
meshes and labeled clusters.

storage of 3D meshes and labeled clusters. We decided to use
this file format for two main reasons: First, HDF5 provides
good data compression and fast access compared to other file
formats. Second, the representations derived from the original
input data is directly stored together with it. In principle one
could use ROS bags for such purposes, but the limited default-
size of 1 GB and missing compression are problematic when
handling high dimensional large scale data. This HDF5 file
storage is designed to hold the static environment represen-
tations. Dynamic objects have to be represented within the
current ROS instance, although of course these files can be
extended when new static world information, e.g., to add new
maps.

For this reason, we extended the structure for high dimen-
sional point cloud data presented in [12] to support meshes
and labeled clusters. Generally, a HDF5 file is structured
into groups that support sub-groups and data sets in form of
multidimensional arrays. Additionally, each data set and group
can also contain meta-data that describes the content of the
stored information. This meta-data is indexed to allow efficient
search within a HDF5 file. The structure to store meshes and
annotations created with the tools presented in the previous
section is shown in Fig. 3.

Within this structure, we distinguish between the mesh ge-
ometry, the associated face and vertex attributes, labeled clus-
ter sets and texture definitions. The geometry is represented by
vertex and face index arrays. Attributes for vertices are n×m
dimensional arrays, where n refers to the number of respective
elements (vertices or faces) and m to the dimensionality of
the associated attributes (e.g., 3 for normals and colors, or
1 for “roughness”). The “labels” collection holds a number
of sub-collections that contain instances of objects with that
label. Each instance is defined by an ID and an array of
face indices that refer to the triangles that belong to that
instance. The “textures” collection defines texture coordinates
for all vertices and material indices for all triangles as well as
material descriptions and all texture images in a sub-collection.

IV. MESH NAVIGATION APPLICATION EXAMPLE

One major focus using the Mesh Tools is motivated by the
current development of algorithms for localization and path
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Fig. 4: Data flow in the mesh navigation application. Green
boxes show the Reconstruction, Move Base Flex Mesh Nav-
igation, and the RViz nodes communicating using messages
shown the rounded white boxes.

(a) Potential field computed by
the Dijkstra path planning plugin.

(b) Potential field computed by
the FMM wave front path plan-
ning plugin.

Fig. 5: Potential field comparison using the TexturedMesh
plugin from Mesh Tools to compare Dijkstra path planning
against FMM wave front propagation.

planning on annotated triangle meshes and recent work on
semantic mapping [2]. In this context, the Mesh Tools are
the basis to visualize the generated maps and states of the
implemented algorithms in near real time. With Move Base
Flex5 (MBF) we have the possibility to use the same execution
logic as for other map representations to perform navigation
tasks, e.g., integrated in a more complex mapping scenario or
simply integrated in scenarios where the robot should traverse
the terrain from its current location to a goal pose selected in
RViz. A MBF mesh navigation server, as well as navigation
plugins and a mesh map implementation are provided in our
mesh navigation bundle6. We provide a Gazebo simulation, as
well as a HDF5 map file containing the map fragment shown
in Fig. 5 and Fig. 6. The HDF5 file provides all trafficability
layers which are then combined and used to perform robot
navigation on meshes. A combination of these layers can
represent the trafficable surface for a certain robot. In the
following example we show how to use our mesh navigation
stack together with the mesh tool with our robot Pluto, which

5https://github.com/magazino/move base flex
6https://github.com/uos/mesh navigation



Fig. 6: A mesh with its wire-frame, and vertex costs. The
wave front propagation planner computed unfolded distance
values to the goal, which are then displayed as vertex costs,
showing a rainbow color potential field to the goal. Red areas
are marked as lethal obstacles.

is modeled in the package bundle pluto robot7. The map
file, navigation setup, and the Gazebo simulation are pro-
vided in the packages pluto navigation and pluto gazebo. The
trafficability layer computation and the navigation planning
on meshes is described in [11]. The trafficability estimation
based on local roughness, height differences (cf. Fig. 6) and
lethal obstacle inflation is combined to a navigation layer.
For this demonstration, we implemented two planner plugins:
A Dijkstra navigation planner performs path planning by
exploiting the triangles’ topological connections and their
costs, and a Fast Marching Method wave front propagation
planner. Here, the wave front or the Dijkstra propagation starts
from the navigation goal and generates a potential field from
the current robot pose to the goal. The computed layers and
potential field are represented as vertex costs and published
using mesh msgs/MeshVertexCostsStamped. The propagation
and computation of the potential field can be inspected using
the TexturedMesh plugin by switching between the different
layers in the Vertex Cost Type drop-down menu. Furthermore,
we can introspect the wave front at a given distance by
choosing corresponding cost limits in the plugin configuration.
We used the MeshGoal plugin to set a user defined navigation
goal, which is send to the executive logic and handed over
to MBF and the configured path planning plugin. The plugin
computes the potential field and deducts a path to the goal –if
possible – as sketched in Fig. 4.

V. CONCLUSION

In this paper we presented data structures, tools and a file
format to handle and store 3D polygon meshes in ROS. The
main contribution of this tool set is to offer support for textured
triangle meshes within the ROS ecosystem as an addition to

7https://github.com/uos/pluto robot

existing voxel-based 3D packages. More precisely, these tools
can be used to generate annotated 3D maps in the context of
semantic mapping. The ability to arbitrary number of attributes
to faces and vertices within the internal representation allows
represent relevant environment information like roughness for
path planning. The provided plugins for RViz allow to visual-
ize the stored information and real time user interaction. The
proposed HDF5 file structure allows compact storage of the
obtained environment information for re-use of the generated
maps. The provided infrastructure can be used to develop
future algorithms for robotic applications using annotated
polygonal environment maps. Currently, our tool set focuses
on the representation of static models. An open problem is the
integration of dynamic objects and interaction with semantic
mapping frameworks like out SEMAP infrastructure [2]. The
development of such tools is ongoing research. In addition,
we plan to integrate our Draco-based compression tools [13]
into the presented infrastructure.
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