Redrose — Reconfigurable drone setup for resource-efficient SLAM

SEBASTIAN RAHN, PHILIPP GEHRICKE, CAN-LEON PETERMOLLER, ERIC NEUMANN, PHILIPP SCHLINGE,

LEON RABIUS, HENNING TERMUHLEN, CHRISTOPHER SIEH, MARCO TASSEMEIER, THOMAS WIE-

MANN, and MARIO PORRMANN,

Osnabriick University, Germany

In this paper we present a heterogeneous architecture that integrates com-
puting modules with FPGAs and GPUs into an existing UAV platform to
allow real time TSDF-based SLAM directly on the drone. The system is fully
integrated into the existing infrastructure to allow ground control to manage
and monitor the data acquisition process. The system is evaluated in terms
of power consumption and computing capabilities. The results show that the
proposed architecture allows computations on the UAV that were previously
only possible in post-processing while keeping the power consumption low
enough to match the available flight time of the UAV.

CCS Concepts: « Computer systems organization — Robotic auton-
omy; Reconfigurable computing.

Additional Key Words and Phrases: ROS, FPGA, SoC, UGV, UAV, please
update

ACM Reference Format:

Sebastian Rahn, Philipp Gehricke, Can-Leon Peterméller, Eric Neumann,
Philipp Schlinge, Leon Rabius, Henning Termiihlen, Christopher Sieh, Marco
Tassemeier, Thomas Wiemann, and Mario Porrmann. 2018. Redrose — Recon-
figurable drone setup for resource-efficient SLAM. In DroneSE 2023: Drone
Systems Engineering, January 18, 2023, Toulouse, France. ACM, New York,
NY, USA, 10 pages. https://doi.org/XXXXXXX XXXXXXX

1 INTRODUCTION

In previous work [4, 7], we presented an approach to run a hardware-
accelerated TSDF-SLAM algorithm on an SoC with FPGA. It was
tailored for a 32 line Velodyne VLP-32 LiDAR. Recent developments
in LiDAR sensors now support up to 128 scan lines, increasing the
required computational power to process all incoming data in real
time. For applications in remote sensing, adding camera data to
the acquired maps is desirable. However, this adds an additional
modality to the sensor data stream which in turn again increases
the computational load. In addition to FPGAs, SoCs with GPU ac-
celerators offer high computational power with reasonable energy
consumption. In this paper, we present a heterogeneous hardware
architecture that combines the previously used SoC with FPGA accel-
erator with a GPU node in an fully integrated sensor and processing
system on a UAV platform. The goal is to provide a SLAM system
that computes a TSDF map on the fly while recording images from
two high resolution RGB cameras. The system is fully integrated
into the drone’s control infrastructure, which allows to manage

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DroneSE 2023, January 18, 2023, Toulouse, France

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06...$15.00
https://doi.org/XXXXXXX.XXXXXXX

the data recording via ground control and send back monitoring
information about the ongoing mapping process to the pilot.

2 RELATED WORK

Heterogeneous system architectures for mobile systems are gaining
attraction to allow computations on-board that have previously
only been possible in offline processing. Especially in the area of
mobile mapping, LiDAR-based SLAM systems with cameras are
of importance. To generate high resolution maps from point cloud
data, methods specially tailored for high frequency LiDAR data like
LOAM [21], Lego-LOAM [13], LioSAM [14] and F-LOAM [15] have
been developed to align point clouds in near real time on high-end
CPUs. On UAVs, such algorithms are not yet real-time capable due
to limited computing resources. In our previous work [3, 7], we
developed a TSDF-based SLAM system that uses a SoC with FPGA
to perform SLAM directly on a mobile platform. However, it is lim-
ited to 32 scan lines and scales not well to larger local maps. In the
context of UAVs these local maps, which are used to align the data,
have to be significantly larger because of the higher distance to the
scanned surfaces. Due to memory bandwidth constraints, large local
maps cannot be efficiently handled in FPGA-based systems. Given
the experiences with other successful TSDF-SLAM approaches like
KinectFusion [9] and Kintinuous [17], which exploit the massive par-
allel structures of GPUs, it is desirable to integrate such accelerators
into the existing infrastructure on UAVs. In this paper, we describe
a heterogeneous architecture that integrates different accelerators
to address the TSDF SLAM problem on a drone. The workload of
different parts of the developed algorithm is distributed to the dif-
ferent accelerator nodes running on the UAV. The computing nodes
are fully integrated into the existing hardware of the UAV to allow
control and monitoring of the data acquisition process on ground,
while keeping the power consumption low, such that the possible
mapping time matches the available flight time of the UAV.

3 DRONE SETUP

Our reconfigurable drone setup (Redrose) for resource-efficient
SLAM can be mounted on the UAV platform and is based on two
main processing boards, one equipped with FPGA and one with
GPU. Besides these boards, two cameras and a LiDAR sensor are
used to collect data.

3.1 UAV Platform

The UAV platform used to carry the system is a custom hexacopter
built from off-the-shelf components. It is built around a Tarot PM
X6 frame which has a motor-to-motor distance of 960 mm. Redrose
including all its components is located below the battery tray for
the UAV. On the stand, the frame has a ground clearance of 320 mm

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

DroneSE 2023, January 18, 2023, Toulouse, France

Rahn et al.

Fig. 1. Photo of the UAV platform with Redrose.

below the battery tray which is sufficient to hold all necessary com-
ponents to perform TSDF SLAM. Additionally, the landing gear
is electrically foldable after the takeoff so the data acquisition is
not disturbed during a flight. The power supply for the UAV con-
sists of two 10000 mAh 6s Li-Po batteries, which power the control
electronic and motors of the UAV.

The control system relies on the CubePilot Cube Orange with
ardupilot (V4.3) in conjunction with a Here3 GPS module and a
herelink module for radio control, telemetry and video transmission.
The UAV can be controlled manually with the herelink remote, but
can also also perform missions prepared in ardupilot Mission Planer
autonomously. Herelink features two video channels to send HDMI
video feeds from the UAV to the remote. Channel 1 is used for an
FPV camera to assist in controlling the UAV. The second channel
transmits a live result preview of the SLAM setup. In addition to
the herelink system, the drone also carries a RFDesign RFD868x-EU
telemetry module to which a corresponding module on the ground
can connect to. This allows a separate computers on the ground
to connect to the UAV to control the compute modules added for
SLAM.

Without Redrose, the UAV platform has a takeoff weight of around
7.6 kg and a payload capacity of about 5 kg. Including all sensors
and compute modules, it has a takeoff weight of 11.3 kg. This allows
a flight time of about 15 min, which enables the system to scan a
large area before it has to land for a battery swap. The complete UAV
platform including all parts for the TSDF SLAM is shown in Fig. 1.
Fig 2 and Fig. 3 show renderings of the Redrose add-on components,
which are described in the following section.

3.2 Redrose components

Redrose consists of multiple components integrated onto an alu-
minum plate, forming a single package. One part is the assembly
that holds two cameras and an Ouster OS1-128 LiDAR sensor. As
shown in Fig. 2 and 3, the two cameras are mounted at an angle of
60° and are mounted at the top of the LiDAR scanner.

Two compute modules, which form cooperating processing nodes,
are screwed directly to the aluminum base plate and are connected to
each other, the LIDAR sensor and cameras as well as the drone itself.

Fig. 2. 3D rendering of Redrose with the FPGA
node mounted on the top of the setup.

Fig. 3. Rendering of Redrose with LiDAR, cam-
eras, GPU node and battery.

Redrose uses an own Li-Po battery. Together with three separate
adjustable voltage regulators to fit the different voltage requirements
of the components, the battery provides power for the compute
modules and the LiDAR. This setup is fixed to the carbon frame by
several mounting brackets and weighs about 3.7 kg.

3.3 Sensors

Redrose consists of the LIDAR scanner and two 4K CSI cameras
with 130° wide angle lenses. The LiDAR is an Ouster OS1 with a 45°
vertical field of view and a resolution of 1024x128 points scanning at
20 Hz. It also integrates an inertial measurement unit (IMU), which
is used for pose estimations in the SLAM algorithm.

Calibration. Due to the large field of view of the lenses, the images
are heavily distorted. Hence, the cameras must be calibrated in
order to match the pictures correctly to the scans. For this, several
pictures from a chessboard of each camera from different angles
and perspectives are undistorted using OpenCV to achieve a good
calibration.

Co-Calibration. To be able to record color data for each laser scan,
the correct offset between LiDAR scans and cameras must be deter-
mined accurately. We use the method described in [8] auto automat-
ically compute the extrinsics without markers. For this, first the 3D
scan is projected into a cylindrical image by transforming the world
coordinates into camera coordinates. Then each point is projected
to cylinder surface around the camera origin. In the last step the
pixel coordinates for the resulting image are computed from the 2D
coordinates. For these virtual scan images the reflectivity channel
is used to computed grayscale pixel values. Because the camera has
a smaller horizontal aperture angle compared to the LiDAR scan,
only areas that are visible in both images only considered during
calibration.

After that, the scan image and the camera image are compared
with the Normalized Mutual Information (NMI) metric. For avoid
local minima, the pictures are smoothed with a Gaussian Filter.
To calculate the NMI score, a histogram of the intensity values is
used as probability distribution. The intensity values are distributed
into 16 histogram bins for better efficiency and smoother objective

Redrose — Reconfigurable drone setup for resource-efficient SLAM

function. Afterwards a Gaussian kernel is applied. In the last step,
the objective function is optimized with the Nelder-Mead algorithm,
starting with an initial guess from the Redrose model. The whole
calibration is done with different scan/image pairs of a flight to
achieve better calibration parameters.

3.4 Compute Modules

Apart from the LiDAR and the cameras, Redrose integrates two
compute modules with different hardware architectures forming a
heterogeneous computing platform. These computing nodes are the
key components in the SLAM pipeline, capable of processing the
camera and LiDAR scan data as well as controlling the application.
One of these modules is an Multi Processor System on Chip (MPSoC)
with a Zynq UltraScale+ Field Programmable Gate Array (FPGA) [5],
which is integrated on a Trenz carrier-board [6]. This system forms
the FPGA node used in our system and is shown in Figure 2. The
FPGA node incorporates a 64-bit Quad-core ARM Cortex-A53 CPU
as well as a Dual-core Arm Cortex-R5F co-processor among other
processing units. Paired with 4GB DDR4 RAM and memory stor-
age, the FPGA node enables the installation of PetaLinux, a Linux
distribution used in systems utilizing Xilinx FPGAs. This allows
the interfaces important for Redrose, such as USB3.0, Ethernet and
General Purpose Input/Output (GPIO), to be configured and used.
The FPGA node, which is used for preprocessing of the laser scan
data has programmable hardware, which can be adapted to our
algorithms and therefore run more efficient and perform better than
simple software implementations on conventional systems utilizing
only CPUs.

The second compute module incorporated in the setup is the
Jetson Xavier NX [2] which runs on Ubuntu Linux and is shown
in Figure 3 among other components. This compute module forms
the GPU node in Redrose and features an embedded GPU along-
side its 6-core ARM CPU. Since GPUs shares a massively parallel
processor architecture by design, they can accelerate tasks where
it is necessary to execute the same instructions on many objects
from large datasets. One field of use is to perform calculations for
the pixels of an image in parallel instead of doing so sequentially.
Furthermore, the GPU node takes advantage of hardware encoder
and decoder to efficiently process image data from both cameras,
which are connected to the GPU node via CSI. The 8GB LPDDR4x
memory is shared by the CPU and GPU and stores, among others,
the SLAM data. To store the map, scan and image data, an Solid
State Storage (SSD) is connected to the GPU node. Using the GPIO
pins, the GPU node can receive and send commands from and to
the ground control. Furthermore, the GPU node sends information
to the ground control via HDMI, which is displayed directly on
the remote control. Details of the ground control are described in
Section 4.4 and 5.3.

The tight integration of the different hardware architectures
forms a heterogeneous platform, using a communication infras-
tructure which is also shared by the LiDAR and cameras, allowing
to exploit the advantages of the two hardware architectures respec-
tively.

DroneSE 2023, January 18, 2023, Toulouse, France

4 HETEROGENEOUS HARDWARE ARCHITECTURE

This section presents the heterogeneous hardware architecture and
its components. The defined communication interfaces between
the individual, the top level data flow and the components are also
discussed.

4.1 Communication

Interfaces. An abstracted overview of the main communication in-
terfaces and the most important tasks are presented in Fig 4. Three
of the four main components, namely the LiDAR scanner, FPGA
and GPU node, communicate with each other via transmission con-
trol protocol/internet protocol (TCP/IP) over Ethernet interfaces.
Ethernet was chosen as the interface because it provides sufficient
bandwidth with 1 Gbit/s, drivers and a stable connection. In order
to enable a direct communication between the GPU node and the
LiDAR scanner, a network bridge is configured on the FPGA node.
To simplify development and debugging, data between the FPGA
and the GPU node can be retrieved. This configuration is called
development mode and can directly be used to visualize and analyze
the data.

In order to send commands to Redrose, the ground control trans-
mits the corresponding signals to the orange cube, which then gen-
erates pulse width modulation signals (PWM) that are read on the
GPIO pins of the GPU node. Furthermore, an HDMI stream is sent
from the GPU node to the UAV, which then transmits it via a 2.4 Ghz
WiFi channel to the remote control. The MAVLink commands to
control the UAV are also transmitted over this channel.

Dataflow. The LiDAR scanner send point clouds and IMU data via
Ethernet to the FPGA node. Since the amount of data for the point
cloud and IMU files is less than 5 MB, the latency that occurs during
transmission can be neglected. As soon as the ARM CPU on the
FPGA node receives the data, it is written to the DRAM. When the
kernels on the FPGA node have finished processing the data, the
ARM CPU sends the processed IMU and point cloud data to the GPU
node via Ethernet. The amount of data has become smaller due to
the processing, so that the transmission latency is also negligible
Here the data is received from the bridges, which are managed by
the CPU on the GPU node, and processed by the SLAM callback on
the GPU. The camera data is processed on the GPU in parallel and
then streamed to the UAV via HDMI and stored on the SSD.The UAV
finally forwards the data via a 2.4 Ghz WiFi channel to the remote
control, on which the HDMI signal is displayed.

4.2 FPGA-Accelerator

FPGAs can make a big improvement when it comes to processing
a large amount data concurrently. We take advantage of this to
pre-process the laser scans efficiently and quickly. To work with the
FPGA accelerator, Xilinx Design Flow version 2021.2 is used [20].
This process is implemented through a scripting approach to sim-
plify execution and customization. The design consists of four basic
building blocks, the hardware design, the operating system, the
kernels and the software application. In the following, these parts
are discussed in more detail.

DroneSE 2023, January 18, 2023, Toulouse, France

FPGA Node
Trenz carrier Board

Rahn et al.

GPU Node
Nvidia Jetson Xavier NX

[Uss | — — MPSoC
LIDAR Scanner | ETH > e . ETH ETH
16bivs LETH | Network-Bridge L Trabivs L] CPU GPU

Zynq UltraScale+ FPGA

FPGA ARM CPU

Kemel FOV Filter
Kemel Media Filter
Kemel Reduce Filter

LIDAR Driver
Kemel Runner
ZMQ Bridge

DDR4

2400 MByte/s

DDR4
DRAM

LIDAR Data
IMU Data

=]

14.4 GBits/s

ZMQ Bridges Registration
SLAM Callback Map Update PVWM <1 Kbit/s
Map Shift Image Pipeline

128-bit LPDDR4x

HDMI .
59.7GByte/s 14.4 GBits's, l MAVLink
,4Gh:
WLAN

Remote
Control

~
]

128-bit LPDDR4x

DRAM

K‘ Local Map Data Camera Data ‘J

NVMe 1x4 PCle
Gen 4 8 GByte/s

Fig. 4. Network architecture including the used interfaces (shown as rectangles) and their theoretical maximum data rates. In addition, the most important
tasks for each part of the MPSoCs are indicated and which data the task accesses in the respective DRAM.

Hardware design. During the hardware design, the interfaces of the
individual components are defined. The processing unit provides
clocks for the FPGA and transfers data via AXI interfaces. Another
important aspect is the connection to the baseboard, which has to
be implemented in order to use the interfaces such as GPIO and
HDMLI. In addition, configurations can be made to the processing
unit. Settings such as memory interfaces, address mapping and
clock frequencies are changed. With the hardware design as the
foundation, the next step is to build the operating system.

Operating system. According to the design flow provided by Xilinx,
a Linux-based operating system called Petalinux is used [18]. Once
created a new project, a minimal operating system is initially created
based on the hardware design. This provides a lean command line
system with basic Linux commands and drivers, which can also be
thoroughly customized to suit individual needs. Components like
the device tree, Linux kernel and rootfs can therefore be customized.
An extensive catalog of settings, packages, libraries and applications
is offered. Moreover, software can be cross-compiled with the help
of bitbake directly into the system. To set up the operating system
for our use case, several components are added, which are listed in
Tab. 1.

After the compilation process of the project, a bootable image
is created which then runs on the FPGA board. That platform can
now be used to utilize the resources of the FPGA and accelerate an
application with embedded kernels.

Kernels. To embed an application that accelerates the pre-processing
of the point clouds on the FPGA, the Vitis Kernel Flow is used [19].
This approach includes writing kernel code to accelerate the al-
gorithms, which are implemented in C++ and translated via the
Vitis tool into hardware for the FPGA. In order to accommodate
hardware-specific optimizations, pragmas are offered, which allow
for code-specific pipelining, memory handling, and other optimiza-
tions. Two of these optimizations were implemented in the kernel, to
ensure an optimal runtime: pipelining and memory optimizations.

Table 1. Packages cross-compiled into the Petalinux operating system.

Package Description

pcl Library for Pointcloud processing

libgpiod Library to access GPIO ports

zeromq Network messaging library used to commu-
nicate with the GPU node

USB RTL8152 USB-to-Ethernet Adapter driver

vim User-friendly and efficient text editor

iperf Measures the maximum bandwidth on IP
networks

ntp Synchronizes the time between the FPGA-

and GPU-Node

Utility to create and manage bridge devices
Setting up the default network configuration
Automatically executes a script at startup.
Used to setup ntp, the bridge and start the
main application

bridge-utils
init-ifupdown
initsdcard

Another requirement is that a host code must be written to im-
plement the interface between the CPU and the FPGA kernel. The
point cloud and additional metadata are transferred via this to the
kernel code. Besides that, configuration files can be used to adjust
the number of kernels and their memory interfaces. After the imple-
mentation of kernel and host code, they are added to the previous
base design. This will create a bootable image containing files to
run the application for accelerating the pre-processing of the point
clouds on the FPGA.

Software. The host code runs across three main threads. One of
these threads handles the data from the laser scanner, the other
communicates to the FPGA and the last one sends data over a bridge
to the GPU node. Apart from that, direct configurations are made by
the operating system itself to implement the network handling and
especially setting up a network bridge between the LiDAR scanner

Redrose — Reconfigurable drone setup for resource-efficient SLAM

and the GPU node. The FPGA node can be started via the drone
control and thus the reading and pre-processing of the laser scan
data.

4.3 GPU-Accelerator

GPUs are built to handle massively parallel work. While the FPGA
can only use statically sized memory and prefers integer computa-
tions, GPUs excel at applications that operate with dynamically allo-
cated memory and floating point arithmetic. With general-purpose
GPU (GPGPU) APIs like CUDA, we can make use of this architecture
to accelerate processes while staying close to CPU code. To utilize
the GPU, data streams need to be managed in order to communicate
with the different computation nodes.

SLAM. The network communication between the GPU and FPGA
node is implemented with the zeromq library. The FPGA node opens
two separate network sockets, which are accessed by the bridges
on the GPU node (see Fig. 4). Communication between a bridge and
the SLAM callback thread is implemented using two buffers for IMU
and LiDAR data, which follow a queue principle (FILO). If the SLAM
algorithm cannot process the data at the intended frequency, the
old messages are discarded so that only recent scans are used. After
a scan is fetched from the buffer, the SLAM callback copies it into
the shared memory and executes the registration and, if necessary,
performs a map update afterwards. To achieve efficient data access,
we are using a swapping strategy, where a part of the local map is
held in shared memory and the global map is stored on the SSD.
After registration, the updated drone position is provided to the
map shift thread, where a shift is performed if the traveled distance
exceeds a threshold. Here, the required areas are loaded from the
SSD into DRAM memory before the map shift interrupts the SLAM
callback and updates the local map.

Image processing. Computation power on the FPGA node is not
sufficient for processing two parallel uncompressed video streams
and saving them afterwards. Therefore we use a direct connection
from the cameras to the GPU accelerator. As many parts as possible
are computed inside the GPU managed memory with CUDA ker-
nels. After getting the raw sensor data, a debayer as well as color
conversion kernel is applied to the images which are undistorted
afterwards via lookup tables derived from the calibration described
previously. If the following pipeline is limited by resolution, we can
also apply a resize kernel to reduce data rates. Using CUDA streams,
all image operations can be pipelined and executed efficiently before
further use. To increase efficiency and resource usage in the image
processing pipeline, we make use of the nvJPEG library, which uti-
lizes hardware encoders to convert JPEG images. This reduces the
load on the CPU when saving files to the disk, since preparing the
buffer, reading the resulting buffer and handling the file system is
omitted. Processing the images to JPEG is not mandatory, but saves
memory on the SSD and decreases the I/O operations, which in turn
reduces the load on the CPU.

On the CPU, a C++ application with an event-driven approach
is used. Each step of the processing pipeline is realized by a thread
containing an event queue. This opens the opportunity to utilize

DroneSE 2023, January 18, 2023, Toulouse, France

every core of the CPU and avoid blocking events because of expen-
sive I/O operations. Every component can subscribe to the desired
events, which are stored in the event queue. Enabling and disabling
components on demand and also intercepting events allow to create
metrics or display debug information via the viewer of the ground
control.

4.4 Ground Control

The ground control monitors and controls the algorithms on our
nodes during flight. For signal transmission to the drone pyMAVlink,
a communication protocol for drones and drone components, is
utilized [10]. The debug viewer sends current camera images to the
drone’s remote control via the HDMI downstream which assists
monitoring Redrose.

With a long range antenna, a PC sends commands in form of
MAVLink messages, which are received by the Orange Cube and
used to control up to six servo ports. These ports function as com-
munication interfaces for the GPU node by using pyMAVlink com-
mands, which generate PWM signals on each port separately, result-
ing in messages in six-bit format. These messages are read through
the GPIO pins of the GPU node and are converted to a binary repre-
sentation. The GPIO pins are constantly monitored and each servo
port is initially set to zero.

An example of how a message is transmitted is shown in Fig. 5.
A message transmission starts, when a positive edge is detected on
any GPIO pin. The message protocol works in such a way, that all
positive edges of each pin are detected first and then all negative
edges are read. For each positive edge detected on a GPIO pin, its
associated complement is added to a global counter. Furthermore,
the order in which the negative edges were detected on the pins must
be the same as the order in which the positive edges were detected.
If the servo ports are deactivated in a different order, the message is
considered invalid and has to be sent again. If no errors are detected
in the sequence, the message is accepted and the command with the
respective counter coding is executed. The repertoire of functions
that can be executed include the acquisition for LIDAR and camera
data, controlling the power controls of the FPGA node and rebooting
the GPU node.

Start Stop
33V
Pnt ov— L1
v 1L
Pin2 ov .

33V
Pin3 oV
33V j
Pin4d ov |
>
time t

Fig. 5. Example transmission with four pins in use.

5 IMPLEMENTATION

This section details the implementation of the different appilcations
running in Redrose described in the previous section.

DroneSE 2023, January 18, 2023, Toulouse, France

Thread
Lidar driver

Thread

while tru

f' recv scan

scan2cloud

push cloud

v

Ringbuffer

Thread

Kemel runner send Bridge
pop cloud
[Tinebufer TTT linebufter TJ] linebufter [T Tinebutfer |
fov_filtler fov_filter fov_filter fov_filter while tru
| inebuffer TV ineouifer § | Tlinebufter] linebuifer |
. f) pop cloud
median_filier median_filter median_filter median_filter Ringbuffer
[inepuffer ||] unepufter [] Tinebufter]| linebutfer | send cloud

push cloud

V

Rahn et al.

Fig. 6. A visual representation of the data flow on the FPGA. The scans are received from the LiDAR and passed to three threads: LiDAR driver, Kernel runner

and send bridge. At the end, point clouds are sent to the GPU node.

5.1 FPGA Application

The FPGA application consists of three threads that are connected in
a pipeline with each thread working independently. These threads
are the LiDAR driver, the kernel runner, and the send bridge, de-
picted in Fig. 6.

LiDAR Thread. The pipeline starts with the LiDAR driver, which con-
tinuously receives new data from the laser scanner. Subsequently,
the individual recordings are converted into 3D data to be stored
in a point cloud data structure. These 3D points are converted to
an integer representation, since integers are processed more effi-
ciently than floating-point numbers on an FPGA. The Ouster LIDAR
generates 128x1024 points, which are received every 50 ms. At the
end, the pointcloud is pushed into a ring buffer, from where it is
processed further by the next thread.

Kernel Thread. The kernel thread starts by reading the point cloud
from the ring buffer. Since we have four kernels, we divide the
point cloud into four equal parts, one for each kernel capable of
processing the point cloud in parallel. At the beginning of each
kernel, a complete ring of 1024 points is loaded into the local memory
of the respective kernel as a buffer which can be seen in Fig. 6.
This allows pipelining and massive parallel access to the individual
elements of the buffer, without the need for global memory access.
The first stage of pre-processing involves a filter that excludes points
that are not within a specified field of view, called FoV_filter. This
field of view is defined by a start angle and an end angle, between
which the remaining points should lie. Points that lie outside these
boundaries are set to zero. After the field of view filter the kernel
continues with a median filter which averages the point cloud to
remove outliers. In order to implement this, a sliding window with
five elements is moved over a scan line, and the center points of the
window are replaced with the average value of the elements. Zero
points are not considered to prevent data from being distorted. When
the kernel thread ends, the buffers of each kernel are combined into
a point cloud and pushed into the ring buffer.

Bridge Thread. After the kernel thread has finished, the pre-processed
point cloud is sent to the GPU node. To minimize transmission band-
width, points with zero values can be omitted. For transmission,
ZeroMQ is used to send data to the GPU node via an Ethernet con-
nection, where it is further processed. In development mode, these
transmissions can be received by another computer, to visualize the

point cloud. Besides that, the bridge also sends IMU data from the
LiDAR directly to the GPU node.

5.2 GPU Application

SLAM. Simultaneous Localization and Mapping (SLAM) is a funda-
mental problem in robotics, which is well discussed in the literature.
Many approaches exist to solve this problem for 3D maps based
on LiDAR data. Our work uses the methods and implementations
from [4], which have been slightly modified to run on the embedded
GPU used in Redrose. These methods are based on an incremental
localization algorithm that uses a Truncated Signed Distance Field
(TSDF) as a map representation. For efficient computation, a swap-
ping strategy is used, where the map region around the current
pose is kept as a local map in GPU memory. If the traveled distance
exceeds a specified threshold, the areas outside this fixed region
are integrated into the global map and the empty regions are filled
with existing data. The global map itself is stored on disk to allow
scanning of large areas.

The main reason for using the GPU for SLAM is the increased
memory bandwidth, which is a bottleneck in the FPGA approach [4].
Moreover, the map update is expected to be accelerated due to the
massively parallel computation on the GPU.Furthermore, we exe-
cute the registration and map update in succession 7. Previously, the
available processing power of the FPGA was divided between map
update and registration, which made it necessary to run the kernels
in parallel for optimal usage. This resulted in additional synchro-
nization steps that interrupted the processing pipeline and caused
idle times. By using the GPU, the registration and map update can
now use the full capacity of the provided hardware individually. As
a result, we are not faced with performance losses due to additional
synchronization steps.

Map Update. The used TSDF map is a 3D voxel grid that contains an
implicit representation of the surface. Each voxel stores the distance
to the surface and a weight that encodes the certainty of the distance
value. To integrate a scan into the map, a ray-marching approach
based on the methods in [1] is used to compute a temporal TSDF
volume. Each ray is traversed from its scan point to the computed
pose from the registration step. The distance value of intersected
voxels are then updated with the current distance to the respective
point. Since multiple rays can pass through a voxel, only the smallest
distance to the surface is kept. Finally, a weighted average procedure
is used to integrate the temporal map into the local map.

Redrose — Reconfigurable drone setup for resource-efficient SLAM

DroneSE 2023, January 18, 2023, Toulouse, France

FPGA node

GPU node

Preprocessing

Wm‘ MU MU

______ Driver IMU Filter

Localization

IMU
Accumulation

: Initial
Transform
Scan e : :
- FOVFilter Scan H N

1 Image processing

: I
l/ Preprocessing <«—— Driver PRI

Pose
Interpolation

6D Pose

! Mapping
{"Reduction :
: Filter

Map Update —>» Map Shift

Control

Video
Ground Control f
-
Commands

Remote Control

Fig. 7. Dataflow between processing steps of Redrose. LIDAR and IMU messages are pipelined through the FPGA and GPU node. Before the images are sent

to the remote control, they are processed and labeled with their poses.

Registration. For the registration of a scan, a Point-to-TSDF method
from [1] is applied iteratively to compute a transformation matrix.
This method defines the registration as a minimization problem, in
which the error of a computed transformation can be understood as
the deviation between points and the actual surface and is therefore
defined as the sum of the TSDF entries over all points. The distance
values of the voxels around a point define a gradient, which is used
to calculate a transformation that moves the points in the direction
of the surface. The iterative application of this method improves the
transformation until an error threshold or a maximum number of
iterations is met. To stabilize the calculation of the transformation
matrix, an additional weight is used, which grows linearly over
the number of iterations and reduces the influence of individual
transformation updates. An initial pose estimation for this algo-
rithm is provided by accumulating IMU measurements between two
consecutive scans as shown in Fig. 7.

Image processing. GPUs were invented to accelerate processing pixel
data. Since we have 2 camera streams in parallel, we offload opera-
tions to the GPU and minimize memory operations to reduce latency.
It starts with getting the image. Since capturing is a blocking call,
there is one thread per camera. Each thread opens a video stream
with the NVIDIA Argus API [12] to support a copy-free pipeline for
the upcoming processing on the GPU. All described image opera-
tions are computed with CUDA in GPU memory and the result is
distributed as a pointer to GPU memory via the event system. The
image gets timestamped and runs through a debayering kernel to
retrieve the full colored image. Afterwards the image is converted
to RGB format and shrinked to a resolution of 1920 x 1080 pixel
using a resize kernel.

The poses of the registration to the corresponding images are
added as metadata for future processing. To improve the pose estima-
tion linear interpolation of the registered poses is used by utilizing
the timestamps of the laser scans and images. If the required poses
are not determined yet, the image remains in the GPU memory until
the interpolated pose can be obtained. In the last processing step the
images are encoded to JPEG, copied to the CPU managed memory
and saved on the carried SSD.

To encode the images to JPEG, the embedded hardware encoder
on the GPU node is utilized. It reaches 460 MHz, which enables

encoding of 30 images per second with a resolution of 1920 x 1080
pixel. There are CPU implementations like libjpeg-turbo which aim
to increase throughput by implementing intrinsic functions of the
CPU architecture but only encode two images per second on our
GPU node. GPU implementations also exist [16], but they come
with the cost of more GPU usage which is already prioritized for
SLAM. We therefore use the resource efficient hardware encoder
and encode two camera streams in ten frames per second each.

5.3 Ground Control

While the drone is in the air, the pilot is focused on flying. The
Ground Control assists the pilot and other operators on the ground
controlling the Redrose application on the drone.

Viewer. The remote control has the capabilities to show a video feed
to the pilot via HDMI Downlink. In Fig. 8, the rendered output sent
by the drone to the remote control is shown. The background of the
transmitted feed is a video stream of one of the cameras. On top of it,
an overlay displays relevant system information. This viewer runs
on the GPU node and retrieves all images through the event system
while ignoring images with a configurable delta time from the image
timestamp to ensure a recent stream for the pilot. The viewer process
runs an http server which can be accessed from the network by every
running process with the capability to open TCP connections. This
way the viewer collects selected state changes and other metrics like
battery voltage from the system and presents them to the pilot. The
APl is also used to dynamically select which camera is shown to the
pilot. Before streaming the image with HDMI Downlink, it is firstly
color converted to RGBA and then alpha blending is applied with the
generated overlay image. The result is then sent to nvdrmvideosink
from NVIDIA with GStreamer [11] that directly writes to the HDMI
output of the Jetson which is connected to the Downlink antenna
of the UAV. This way we save CPU load and memory consumption
for running a Linux window server.

Webinterface. To ensure easy operation and control of the GPU
and FPGA node on the drone, we developed a web interface. The
integration of pyMAVLink is made possible by the fact that the web
interface is based on Python. Figure 9 illustrates the main structure
of the website. At the top, there are configuration options for the

DroneSE 2023, January 18, 2023, Toulouse, France

&
[DBG] !Systerfl‘lm .
[DBG] FPGA Node starting

Fig. 8. Monitoring the system state on the remote control display streamed
with HDMI Downlink.

connection to the drone. This includes the number of servo ports
used for message transmission, the connection interface of the long-
range antenna and the BAUD rate. Subsequently, the connection
can be created by clicking on the “Create Connection” button. If the
connection is successful, more buttons for sending messages will
appear. These buttons enable you to perform certain functions, like
increasing or decreasing the time for test data recordings or starting
them. For debugging purposes, there is the possibility to transmit a
self-defined bit order.

FlySense Ground Control

Basic Configurations
Drone AUX Ports Path for drone Connection Drone BAUD

4 - /dev/ttyUSBO 57600 -

Create Connection

Signals for test data recording

Increment Recording Decrement Recording Time Start Recording

Debug Commands
Select your test signal

[0,0,0,1]

Send Signal

Fig. 9. The Ground Control GUI allows you to connect and send messages
to the drone while it is in the air.

6 EVALUATION

For the Redrose system, it is essential to run applications as effi-
ciently as possible on the low-power hardware. To analyze this, the
runtime of the algorithms and the utilization of the hardware are
considered. The FPGA node, the GPU node and the general power
consumption of Redrose will be discussed.

6.1 FPGA node

In the following section, the application running on the FPGA node
is analyzed by measuring the performance and resource utilization.
For this purpose, the kernel thread responsible for the main process-
ing of the pointclouds is considered. The measurement data were
collected for one, two, four and eight kernels.

Measurements were made for the kernel and the total thread
time, which are illustrated in Tab. 2. The kernel time considers

Rahn et al.

how long it takes to process a point cloud on the FPGA hardware.
The total thread time is the duration for the pipeline to process
one iteration, including the kernel time, communication with the
FPGA and reading/writing the ring buffers. Increasing the number of
kernels generally results in faster runtimes. On average, increasing
the number of kernels from one to four makes the execution time
40 % faster. When the amount of kernels increases from one to two,
the total time increases by 41.2 %, while it only increases by 15 %
from two to four. The speed boost results from the fact, that kernels
run concurrently. Each of them has its own buffer, which results in
massive parallel data processing.

Number of kernels task min max avg
1x total 33ms 39ms 34ms
kernel 14ms 15ms 14 ms
2x total 16ms 33 ms 20 ms
kernel 8ms 11ms 8ms
4x total 16ms 17 ms 17 ms
kernel 5ms 5ms 5 ms
8x total 13ms 18ms 17 ms

kernel 4ms 6ms 6 ms

Table 2. Execution time of the kernel. In addition, different numbers of
kernels were used.

Looking at the utilization of FPGA resources in shown in Tab. 3,
the hardware usage doubles as the number of kernels increase. In
general, a single kernel on the FPGA does not use many resources. If
the number is increased to four, still %80 % of the FPGA is available
for other tasks. With more than four kernels, the pre-processing

Table 3. FPGA resource utilization for different number of kernels.

Number of kernels CLB LUTS BRAM
1x 7.35 % 4.36 % 4.57 %
2x 1267 % 827 % 9.41 %
4x 23.69% 15.62% 18.28%
8x 4751 % 3127 % 36.56 %

does not become faster at all, but instead just unnecessarily takes up
more resources. This can be explained by the fully loaded memory
interface, which does not have more than six connections. Thus
further kernels are slowed down.

6.2 GPU node

SLAM performance. To evaluate our SLAM algorithm, we measured
the computation time required for registration and map update.
For this purpose, we created a network recording of the LiDAR,
which was then converted into a ROS Bag file to use the extensive
functions of the ROS environment. A ROS interface allows us to
stream the data from recordings back into our heterogeneous system
and monitor the processed scans and generated TSDF map, see
Fig. 10 above. The recording contains 1236 scans with a resolution
of 1024x128 points at a frequency of 20 Hz. The resulting times of

Redrose — Reconfigurable drone setup for resource-efficient SLAM

the SLAM algorithm can be seen in the diagram in Fig. 10. Here,
the “total” category includes the times for registration and map
update, as well as a previous type conversion and copy of a scan into
the GPU shared memory. Despite individual outliers, the duration
that our SLAM algorithm needs for a scan is in the range of 50-
100 ms. It should be emphasized that the map update has received
a speed-up by an order of magnitude compared to [3], due to the
possibility of a massively parallel computation of the simple ray-
marching algorithm on the GPU. With a maximum duration of
2 ms, the influence on the total time is marginal. An overview of
the evaluation is given in Tab. 4. Qualitatively, due to the large
measurement ranges of our application, even small registration
errors cause visible drifts in the outer areas of the local map, which
are visible in Fig. 10 in the left panel of the map.

Table 4. Runtimes of registration and map update step on the GPU node.
The “Total” category includes the times for registration and map update
plus type conversion and copying into the GPU shared memory.

task min max average

Total 9 ms
Registration 3 ms
Map Update 0.2ms 2ms

253 ms 55 ms
143 ms 44 ms
0.4 ms

Image processing. To examine the impact of the image processing
on the GPU node, we measured CPU and GPU utilization as well as
memory usage. In Tab. 5, the utilization is listed for image processing
only. It should be noted, that the load of the operating system with
GUI is included in the measurements. We observed that the CPU
utilization is a little more than a third and the GPU is utilized about
a quarter on average. However, the peak loads of the GPU should
not be underestimated, where half of the GPU is needed for image
processing. We assume that this due to interference with SLAM
process. Especially in time critical tasks this could lead to problems,
for example during registration.

Table 5. GPU node utilization for image processing without viewer display.

Component min max average
CPU 32 % 44 % ~38 %
GPU 0% 56 % ~25 %

Memory 3.6GB 3.7GB ~3.7GB

Viewer. In addition to the images from the image processing, the
viewer adds information to the frames and outputs them via HDMIL
This additional load is shown in Tab. 6. Not only the CPU and GPU
load increases by 5-7 %, but also 500 MB more memory is needed.
Due to the integration of the viewer in the image processing pipeline,
the difference is fairly low compared to the rest of the application.

6.3 Energy Consumption

An important requirement for Redrose is a low power consumption.
Since the drone has a flight time of about 15 minutes, the additional

DroneSE 2023, January 18, 2023, Toulouse, France

Table 6. GPU node utilization for image processing with viewer display.

Component min max average
CPU 39 % 56 % ~45 %
GPU 0% 66 % ~30 %

Memory 41GB 42GB =42GB

components and modules for the SLAM should be able to record data
and perform the according algorithms for the same duration. For
the components of Redrose a 74 Wh battery is used. The separate
voltage regulators are set to 19V for the GPU node, 12V for the
FPGA node and 24V for the laser scanner. The measured power
consumption of the setup results in around 40 W at idle without
running SLAM. During idle, separate measurements show a power
consumption of 7W on the GPU node, about 16 W on the FPGA
node and 16 W on the LiDAR scanner.

Due to the typical characteristics of FPGAs, the FPGA node in our
configuration consumes about the same amount of power under load
as running on idle. For this reason, the measured power consumption
of the FPGA node while performing the kernels is again about 16 W.
The GPU node on the other hand consumes about 19 W running all
necessary steps of SLAM. This results in a total power consumption
of around 52 W under full load. Without discharging the 74 Wh
battery too low, it can supply Redrose with energy longer than an
hour and therefore can last for multiple flight sessions assuming
additional sets of batteries are provided for the UAV itself.

7 CONCLUSION AND FUTURE WORK

A heterogeneous processing platform for drones has been presented
that seamlessly integrates embedded processors, reconfigurable
hardware and GPUs in a compact yet powerful environment. The
combination of FPGA-based and GPU-based accelerators facilitates
awide variety of options for hardware software partitioning. Tightly
integrating the processing environment into the control infrastruc-
ture of the drone combined with a sophisticated monitoring envi-
ronment eases the development and evaluation of new applications.

The first target application that utilizes the heterogeneous ar-
chitecture is an integrated SLAM system that combines on the fly
computation of a TSDF map with high-resolution image processing.
The heterogeneous platform enables the integration of a LIDAR sen-
sor with 128 scan lines, significantly increasing the resolution but
also the computational requirements compared to previous work [4].
The application has been partitioned to the embedded processors,
GPU and FPGA fabric targeting real-time performance with min-
imum energy requirements. First results are highly encouraging,
indicating that online processing of the complete application is pos-
sible on the heterogeneous platform without reducing the flight
time of the UAV.

Future work concentrates on optimizations of the approach to
further increase accuracy, performance and energy. In addition to
low-level optimizations of the FPGA and GPU implementation, new
data structures like octrees and hashmaps will be evaluated to cir-
cumvent the current memory bottlenecks.

DroneSE 2023, January 18, 2023, Toulouse, France

Rahn et al.

2504

2004

150

100 4

milliseconds (ms)

50 Tl L wh

— total
—— map update
—— registration

600 800 1000

total number of registrations

Fig. 10. Top: A drone scan of a rural area, with the corresponding TSDF local map. Bottom: Runtime evaluation of our slam algorithm on on the GPU node

based on a recording of 1236 scans with a resolution of 1024x128 points at 20 Hz

REFERENCES

[1] Daniel Ricao Canelhas, Todor Stoyanov, and Achim J. Lilienthal. 2013. SDF Tracker:
A parallel algorithm for on-line pose estimation and scene reconstruction from
depth images. 2013 IEEE/RST International Conference on Intelligent Robots and
Systems (2013), 3671-3676.

[2] NVIDIA Corporation. 2022. Jetson Xavier NX Series. https://www.nvidia.com/de-
de/autonomous-machines/embedded-systems/jetson-xavier-nx/. Accessed: 2022-
11-22.

[3] Marc Eisoldt, Marcel Flottmann, Julian Gaal, Pascal Buscherméhle, Steffen Hin-

derink, Malte Hillmann, Adrian Nitschmann, Patrick Hoffmann, Thomas Wie-

mann, and Mario Porrmann. 2021. HATSDF SLAM-Hardware-accelerated TSDF

SLAM for Reconfigurable SoCs. In 2021 European Conference on Mobile Robots

(ECMR). IEEE, Bonn, Germany, 1-7. https://doi.org/10.1109/ECMR50962.2021.

9568815

Marc Eisoldt, Julian Gaal, Thomas Wiemann, Marcel Flottmann, Marc Rothmann,

Marco Tassemeier, and Mario Porrmann. 2022. A fully integrated system for

hardware-accelerated TSDF SLAM with LiDAR sensors (HATSDF SLAM). Robotics

and Autonomous Systems 156 (2022), 104205. https://doi.org/10.1016/j.robot.2022.

104205

[5] Trenz Electronic. 2022. Trenz Electronic Wiki - TE0808 TRM. https://wiki.trenz-
electronic.de/display/PD/TE0808+Resources. Accessed: 2022-11-22.

[6] TrenzElectronic. 2022. Trenz Electronic Wiki - TEBF0808 TRM. https://wiki.trenz-
electronic.de/display/PD/TEBF0808+TRM. Accessed: 2022-11-22.

[7] Marcel Flottmann, Marc Eisoldt, Julian Gaal, Marc Rothmann, Marco Tassemeier,

Thomas Wiemann, and Mario Porrmann. 2021. Energy-efficient FPGA-accelerated

LiDAR-based SLAM for embedded robotics. In 2021 International Conference on

Field-Programmable Technology (ICFPT). IEEE, Auckland, New Zealand, 1-6. https:

//doi.org/10.1109/ICFPT52863.2021.9609934

Felix Igelbrink, Thomas Wiemann, Sebastian Piitz, and Joachim Hertzberg. 2019.

Markerless AD-HOC calibration of a hyperspectral camera and a 3D laser scan-

ner, In Intelligent Autonomous Systems 15. Advances in Intelligent Systems and

Computing 867, 748-759. https://doi.org/10.1007/978-3-030-01370-7_58

[9] Shahram Izadi, David Kim, Otmar Hilliges, David Molyneaux, Richard Newcombe,
Pushmeet Kohli, Jamie Shotton, Steve Hodges, Dustin Freeman, Andrew Davison,
et al. 2011. KinectFusion: real-time 3D reconstruction and interaction using a
moving depth camera. In Proceedings of the 24th annual ACM symposium on User
interface software and technology. 559-568.

4

flas’

8

=

10

(10]

(11]

MAVLink. 2022. MAVLink User Guide. https://mavlink.io/en/. Accessed: 2022-11-
24.

NVIDIA. 2019. Accelerated GStreamer User Guide. https://developer.download.
nvidia.com/embedded/L4T/r32_Release_v1.0/Docs/Accelerated_GStreamer
User_Guide.pdf. Accessed: 2022-11-25.

NVIDIA. 2022. Libargus Camera APL Retrieved 2022-11-25 from https://docs.
nvidia.com/jetson/l4t-multimedia/group__LibargusAPLhtml

Tixiao Shan and Brendan Englot. 2018. Lego-loam: Lightweight and ground-
optimized lidar odometry and mapping on variable terrain. In 2018 IEEE/RST
International Conference on Intelligent Robots and Systems (IROS). IEEE, 4758—
4765.

Tixiao Shan, Brendan Englot, Drew Meyers, Wei Wang, Carlo Ratti, and Daniela
Rus. 2020. Lio-sam: Tightly-coupled lidar inertial odometry via smoothing and
mapping. In 2020 IEEE/RSJ international conference on intelligent robots and systems
(IROS). IEEE, 5135-5142.

Han Wang, Chen Wang, Chun-Lin Chen, and Lihua Xie. 2021. F-loam: Fast lidar
odometry and mapping. In 2021 IEEE/RSY International Conference on Intelligent
Robots and Systems (IROS). IEEE, 4390-4396.

André Weiflenberger and Bertil Schmidt. 2021. Accelerating JPEG Decompression
on GPUs. In 2021 IEEE 28th International Conference on High Performance Com-
puting, Data, and Analytics (HiPC). 121-130. https://doi.org/10.1109/HiPC53243.
2021.00026

Thomas Whelan, Michael Kaess, Maurice Fallon, Hordur Johannsson, John
Leonard, and John McDonald. 2012. Kintinuous: Spatially extended kinectfu-
sion. (2012).

Xilinx. 2021. PetaLinux Tools Documentation: Reference Guide (ug1144 (v2021.2)
ed.). Retrieved 2022-11-26 from https://docs xilinx.com/r/2021.2-English/ug1144-
petalinux-tools-reference- guide/Revision-History

[19] Xilinx. 2021. Vitis High-Level Synthesis User Guide (ugl399 (v2021.2)
ed.). https://docs.xilinx.com/r/2021.2-English/ug1399-vitis-hls/Getting- Started-
with-Vitis-HLS

Xilinx. 2021. Vivado Design Suite User Guide: Design Flows Overview (ug892
(v2021.2) ed.). Retrieved 2022-11-26 from https://docs.xilinx.com/r/2021.2-English/
ug892-vivado-design-flows-overview/Vivado-System-Level-Design-Flows

[21] JiZhang and Sanjiv Singh. 2014. LOAM: Lidar odometry and mapping in real-time..
In Robotics: Science and Systems, Vol. 2. Berkeley, CA, 1-9.

(12]

(13

[14

[15]

[16

(17]

(18]

[20

https://www.nvidia.com/de-de/autonomous-machines/embedded-systems/jetson-xavier-nx/
https://www.nvidia.com/de-de/autonomous-machines/embedded-systems/jetson-xavier-nx/
https://doi.org/10.1109/ECMR50962.2021.9568815
https://doi.org/10.1109/ECMR50962.2021.9568815
https://doi.org/10.1016/j.robot.2022.104205
https://doi.org/10.1016/j.robot.2022.104205
https://wiki.trenz-electronic.de/display/PD/TE0808+Resources
https://wiki.trenz-electronic.de/display/PD/TE0808+Resources
https://wiki.trenz-electronic.de/display/PD/TEBF0808+TRM
https://wiki.trenz-electronic.de/display/PD/TEBF0808+TRM
https://doi.org/10.1109/ICFPT52863.2021.9609934
https://doi.org/10.1109/ICFPT52863.2021.9609934
https://doi.org/10.1007/978-3-030-01370-7_58
https://mavlink.io/en/
https://developer.download.nvidia.com/embedded/L4T/r32_Release_v1.0/Docs/Accelerated_GStreamer_User_Guide.pdf
https://developer.download.nvidia.com/embedded/L4T/r32_Release_v1.0/Docs/Accelerated_GStreamer_User_Guide.pdf
https://developer.download.nvidia.com/embedded/L4T/r32_Release_v1.0/Docs/Accelerated_GStreamer_User_Guide.pdf
https://docs.nvidia.com/jetson/l4t-multimedia/group__LibargusAPI.html
https://docs.nvidia.com/jetson/l4t-multimedia/group__LibargusAPI.html
https://doi.org/10.1109/HiPC53243.2021.00026
https://doi.org/10.1109/HiPC53243.2021.00026
https://docs.xilinx.com/r/2021.2-English/ug1144-petalinux-tools-reference-guide/Revision-History
https://docs.xilinx.com/r/2021.2-English/ug1144-petalinux-tools-reference-guide/Revision-History
https://docs.xilinx.com/r/2021.2-English/ug1399-vitis-hls/Getting-Started-with-Vitis-HLS
https://docs.xilinx.com/r/2021.2-English/ug1399-vitis-hls/Getting-Started-with-Vitis-HLS
https://docs.xilinx.com/r/2021.2-English/ug892-vivado-design-flows-overview/Vivado-System-Level-Design-Flows
https://docs.xilinx.com/r/2021.2-English/ug892-vivado-design-flows-overview/Vivado-System-Level-Design-Flows

	Abstract
	1 Introduction
	2 Related Work
	3 Drone Setup
	3.1 UAV Platform
	3.2 Redrose components
	3.3 Sensors
	3.4 Compute Modules

	4 Heterogeneous Hardware Architecture
	4.1 Communication
	4.2 FPGA-Accelerator
	4.3 GPU-Accelerator
	4.4 Ground Control

	5 Implementation
	5.1 FPGA Application
	5.2 GPU Application
	5.3 Ground Control

	6 Evaluation
	6.1 FPGA node
	6.2 GPU node
	6.3 Energy Consumption

	7 Conclusion and Future Work
	References

