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This paper presents a novel heuristic for correcting scan pose estimations after loop closing in SLAM using
3D laser scans. Contrary to state of the art approaches, the built SLAM graph is sparse, and optimization is done
without any iteration between the SLAM front and back end, yielding a highly efficient loop closing method.

Several experiments were carried out in an urban environment and evaluated against ground truth. The results are
compared to other state of the art algorithms, proving the high quality, yet achieved faster by an order of magnitude.
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Heuristička metoda zatvaranja petlje za 6D SLAM velikih dimenzija. Članak prikazuje novu heuristiku
čija je svrha korekcija estimacije pozicija očitanja 3D lasera nakon zatvaranja petlje u SLAM-u. U suprotnosti
s postojećim pristupima, dobiveni je SLAM graf rijedak te se optimizacija provodi samo pri detekciji zatvaranja
petlje, rezultirajući vrlo učinkovitom metodom.

Provedeno je nekoliko eksperimenata u urbanom okruženju i uspored̄eno s točnim vrijednostima. Rezultati su
takod̄er uspored̄enim s postojećim algoritmima, čime je dokazana visoka kvaliteta algoritma uz red veličine veću
brzinu izvod̄enja.

Ključne riječi: izgradnja karte u 3D mobilnim robotom, istovremena lokalizacija i izgradnja karte, zatvaranje
petlje

1 INTRODUCTION

Robots in recent research tend to leave the small labo-
ratories and operate in large scale outdoor environments.
This imposes two new challenges for mapping algorithms:
First, they have to cope with non-flat surroundings, mak-
ing 3D environment mapping necessary. Second, the size
of the areas increases. In the past, automatic 3D mapping
approaches in unstructured environments have been pre-
sented and successfully evaluated [1, 2], in competitions
such as Robocup Rescue [3], the European Land Robotics
Trial ELROB [4] or the DARPA Grand Challenge [5].
However, most of the approaches aim at mapping small
environments or at constructing local maps used for navi-
gation tasks, in order to cope with the immense amount of
data.

This paper presents a novel approach to large-scale 3D
mapping1. We aim at reducing the run time of our map-
ping system such that it performs fast in large environ-
ments using 3D laser scans. The main achievement is
a new algorithm for efficient loop closing and consistent
scan alignment that avoids iterative scan matching over

1This paper is an extended version of [6]
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Fig. 1. Schematic overview of the complete algorithm,
namely the interaction of ICP, ELCH and LUM. The
dashed line separates the global optimization part that is
executed one single time as a post processing step.
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all scans, thereby outperforming comparable algorithms
used in SLAM previously. Figure 1 depicts a schematic
overview of the complete algorithm. The algorithm oper-
ates with 6D poses, i.e., is able to handle robot motion with
six effective degrees of freedom (translation and rotation).

2 RELATED WORK
A globally consistent representation of a robot’s envi-

ronment is crucial for many robotic applications. Equipped
with a 3D depth-perceiving sensor, many mobile systems
gather spatial information about their local 3D environ-
ments. Recent progress in robotics in environment sens-
ing has led from initially custom made 3D scanners, as
in [7–9], to sophisticated highly accurate 3D scanning sys-
tems, e.g., Riegl, Leica or Zoller+Fröhlich scanners, very
fast scanning systems, like the Velodyne 3D scanner, and
the emerging technology of 3D cameras. The software de-
velopment has to keep up with this progress in sensing
hardware. This implies the need of new algorithms and
data structures for handling the data. Figure 2 presents a
3D map in bird’s eye view that contains 15,338,164 data
points from 924 automatically acquired 3D scans.

The local data contained in single 3D scans have to
be registered to build a global map. A well established
method for incremental registration of 3D point clouds is
the iterative closest points (ICP) algorithm [12]. However,
any incremental application of such matching algorithms
leads to inconsistencies due to inaccurate sensor data and
due to accumulating registration tolerances. To avoid these
problems, global matching algorithms are needed, taking
global correspondences between all scans simultaneously
into account [13].

Sensor noise is modeled by probability distribu-
tions over measurements in probabilistic mapping ap-
proaches [14]. All sensor readings are noisy, and can be
modeled by probability distributions. If one chooses to
model measurements by Gaussians, i.e., using a mean and
a standard deviation, solving SLAM reduces to solving a
system of linear equations [15]. Closed loops, i.e., a sec-
ond encounter of a previously visited area of the environ-
ment, play a special role in SLAM algorithms. Once de-
tected, they enable the algorithms to bound the global error
by deforming the already mapped area to make the model
locally consistent. However, there is no guarantee for the
model to be correct.

Global relaxation techniques can be divided into two
major categories. First, direct methods establish corre-
spondences between features, i.e., they address the data
association problem and minimize the overall error in the
SLAM graph. EKF based methods like [16–18] are exam-
ples. These methods are computationally expensive, since
large linear equation systems have to be solved. The num-
ber of unknown variables depends on the number of poses

and on the number of features to be estimated. Further-
more, feature detection and association need to be reliable,
and difficulties occur due to linearization [15]. The second
category is based on iterative methods, which overcome
the feature extraction. The input usually consists of un-
processed scan data, and correspondences between poses
are computed based on closest data points. An example is
the method by Lu and Milios [19] for 2D scans and its
extension to 3D [13]. These algorithms also solve sys-
tems of linear equations, to yield pose estimations. They
iterate two steps, namely, scan matching and pose estima-
tion, to compute a consistent global map. Loop closing
is performed by adding additional edges, iff the robot en-
counters a position close to another where it had been be-
fore [20–22]. Thus edges represent matchable 3D scans.

Since SLAM implies solving a system of linear equa-
tions when updating a single map hypothesis, the computa-
tional requirements are high, due to increasing matrix sizes
during exploration and mapping. Konolige presents a di-
vide and conquer algorithm to handle large matrices [21],
but it still suffers from the iterative approach of Lu and
Milios style SLAM.

To build fast SLAM back ends, Olson and Grisetti have
proposed methods for distributing the error during loop
closing over the SLAM graph [23–25]. The result corre-
sponds to a fast solution of the linear system of equations,
which is based on exploiting the graph structure. Simi-
larly, Kaess et al. presents a re-ordering of the equations to
compute the solution faster [26]. Borrmann et al. conse-
quently exploits the sparseness of the equation system, ob-
taining similar results [27]. Paz et al. presents a divide and
conquer method for the EKF SLAM approach [28]. The
tree map algorithm of Frese uses a partition of the map as
well, and yields an approximative solution to SLAM [29].
Graph simplification is used in [17], aiming at reducing the
number of vertices in the SLAM graph, thus reducing the
number of equations. Note: All these SLAM back end ap-
proaches have to be combined with a SLAM front end, i.e.,
with data association or scan matching. In the scan match-
ing case, both methods have to be iterated. The assumption
is that the point correspondences are correct in the last it-
eration. Grisetti et al. close a loop by using a spanning tree
to iteratively distribute the error [23].

In contrast to the previously mentioned algorithms,
rather simple methods to distribute the error in a single
closed loop have been proposed. They distribute the error
uniformly in the loop, or weighted by the path length [1].
However, this technique is incapable of handling multiple,
nested loops.

In contrast to almost all previous mentioned approaches,
we propose the ELCH strategy, which does not iterate, and
uses a sparse pose graph representation. Both ideas make
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Fig. 2. Example trajectory (top view) that was automatically acquired by a mobile robot [10]. The overall time needed
to process this data with our slam6d software [11] was reduced from 18.2 minutes to 2.9 minutes, which is faster than
acquisition time. The scans have been taken according to the sequence: A-B-C-D-A-B-E-F -A-D-G-H-I-J-H-K-F -
E-L-I-K-A. The bottom part of the figure shows two rendered 3D views. Left: Before loop closing. Right: Corrected
scene.
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the proposed solution unique and faster than all competi-
tive methods.

3 EXPLICIT LOOP CLOSING

Our previous work about consistent mapping [13] has
applied global Lu/Milios style relaxation when a closed
loop is detected (cf. Figure 3, LUM). The procedure
proved to perform well in many applications, but suffers
from its high computational complexity. When mapping
large-scale outdoor environments, the scenes may contain
hundreds of 3D scans, and the global relaxation has to iter-
ate the SLAM front and back end. When applying global
relaxation, closest point correspondences have to be com-
puted anew in every iteration. This is inherently time-
consuming.

3.1 Loop Detection and Graph Construction

Explicit loop closing is proposed here to overcome this
problem. When detecting a closed loop, scan matching
is applied to transform the last acquired scan. This trans-
formation first dissociates the last vertex from the current
SLAM graph and yields a transformation vector ∆X that
consists of a rotation R and translation t. Dissociation here
means to disregard for the moment all constraints between
the loop closing scan pose and the previous scan poses rep-
resented as vertices in the SLAM graph; after the loop-
closing scans are matched locally, the offset determined in
the matching is propagated through the SLAM graph, us-
ing the previous constraints. An additional effect of scan
matching is that the last vertex is moved to a position with
minimal error with respect to the first vertex of the loop.
Afterwards, the transformation vector ∆X has to be dis-
tributed over the SLAM graph, i.e., over the previously en-
countered poses. In our current system, global LUM style
optimization is used as a post processing step one single
time for the otherwise completed map to improve global
consistency of the map.

The following subsections describe the algorithm in de-
tail. It operates on a graph G = (V,E), where the set of
vertices V is given by the scan poses X and the set of edges
E contain pairs of vertices that were already matched with
ICP. Edges are labeled with the variances, that approximate
the uncertainty of the connected poses vl and vk.

3.2 Loop Closing based on initial ICP registration

Using the robot trajectory estimated by means of the lo-
cal ICP algorithm, we detect loops in the path using the
Euclidean distance between the current and all previous
poses (distance threshold of usually 15 meters), or using
GPS data if available. A threshold of minimal number of
intermediate scans (e.g., 20) is used to circumvent vacuous

loop closing within consecutive scans. This simple heuris-
tic was sufficient to produce the results shown in Section 4.
More complex approaches can be used as well, if available.
At this stage, we simply assume that the software has some
method of recognizing loops, which is not the focus of this
paper; we will concentrate on how to employ these closed
loops efficiently instead.

Given the first and last scan of a detected loop, we build
small metascans at its two ends consisting of only few
scans (here: two) around the first and last scan, respec-
tively, and match those metascans using ICP. This is done
by ignoring all previous constraints, called dissociating of
the scan. The difference in the pose of the last scan be-
fore and after application of ICP yields a transformation
error ∆X that has to be distributed between all poses on
the loop, preserving the topology of the map. For exam-
ple, laser scans that are near to another scan of the loop
should still be close to the same scan after applying the
deformation.

After the error distribution, only one edge is added to
the graph, connecting the first and the last scan of the loop.
Figure 4 emphasizes the difference of our SLAM graphs
and graphs used for solving SLAM in [13, 23–25], where
any two vertices that are close enough are connected. Hav-
ing an order of magnitude less of edges in the SLAM
graph, we do not have to compute the influences during the
relaxation phase. This saves memory as well as computing
time.

3.3 Loop Optimization in SLAM Graphs

To motivate our graph optimization algorithm, consider
the following three examples; the algorithm is described
for graphs in general in Section 3.5. Figure 5 presents a
graph of a simple loop, where vertex E closes the loop
to vertex A. The edges are labeled with the relative error
between the connected vertices, i.e. the pose variances as
explained above. We aim at calculating weights for the ver-
tices that specify the fraction of the vector ∆X by which
the pose need to be changed to achieve a consistent map.
It is obvious that vertex E has to be transformed by ∆X
while vertex A does not need to be transformed at all. The
weight wi of the vertex vi is computed as follows:

wi =
d(vs, vi)

d(vs, ve)
, (1)

where vs is the first vertex in the loop and ve last one.
d(vl, vk) is the sum of the edge weights ci,j on the way,
i.e.,

d(vl, vk) :=
∑

edge{i,j}∈ Path
from vl to vk

ci,j . (2)
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3D scan matching O(N logN) (I)
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Fig. 3. The interaction of ICP and LUM in 6D SLAM. See [13] for details. The threshold ε, used to determine if a scan
changed its pose, is the same in both parts of the algorithm. The right part of the figure denotes the run times. N is the
number of points in a single 3D scan, n denotes the number of poses, and l is the number of loops.

Fig. 4. Comparison of connectivity of different SLAM graphs. Left: State of the art graph SLAM approaches. Right:
Method of this paper. The bottom figures are zoomed views of the plots above.
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Fig. 5. Simple loop, starting at vertex A and ending at ver-
tex E and the resulting weights for every vertex, as com-
puted by the Loop Optimizer Algorithm. All edges are trail
edges (blue), cf. Section 3.4.

In the first example (Figure 5), we specified the resulting
weighting of the vertices in the table on the right.

The example presents a graph with vertices specified as
scalars, thus we use a scalar ci,j as edge weight. In case
of k-dimensional input, we separate every dimension and
decompose the problem into k subproblems. Hence, only
the diagonal of the covariance matrix, i.e., the variances,
is used in the k-dimensional case, because the off diagonal
elements are usually small. Using SLERP [30] we have
k = 4, i.e., three for the position and one for the quater-
nion describing the rotation. Covariances are computed as
described in Section A.2.

The second example is shown in Figure 6. It extends our
first example by a path, attached to a single vertex. In this
case, the attached vertices are adjusted in the same way as
the vertex of the loop is transformed. The table on the right
specifies the values.

As a third example we use the graph in Figure 7 with
two alternate pathways. Since we want to distribute the
∆X with the smallest possible error, we find the shortest
path between the two loop closing vertices. After the cor-
rection is distributed over the shortest path, we adjust the
remaining pathways to achieve consistency. To obtain the
updates, we recursively exploit the same algorithm as for
the main loop, but with the already computed weights of
the start and end of the alternate path, instead of the de-
fault weighting of 0 and 1.

The described strategy could cope with arbitrary graphs,
as shown in the next Section.

3.4 Arbitrary Graphs

The proposed ELCH strategy was primarily developed
for SLAM graphs, but it is applicable to arbitrary graphs,
as we will show with the two following definitions. In
these, a trail is defined as a path where every vertex is only
visited once (cf. for example Bondy [31]).

Definition 1 (Trail edge) Given two vertices vf and vl in
an undirected graph G = (V,E), we name an edge e trail
edge with respect to vf and vl, if there is a trail from vf to
vl containing the edge e.

Definition 2 (Branch edge) Given two vertices vf and vl
in an undirected graph G = (V,E), we name an edge e
branch edge with respect to vf and vl, if there is no trail
from vf to vl containing the edge e.

Following this definitions every edge in an arbitrary
graph is either a trail edge or a branch edge.

3.5 The Loop Optimizer Algorithm

To compute the weights for arbitrary graphs, we pro-
pose the Loop Optimizer Algorithm (LOA) as listed in
Algorithm 1, which is built on the previous two defini-
tions. Its input is an arbitrarily connected, undirected graph
G = (V,E) with two special vertices vf and vl, specifying
the first and the last vertex of a closed loop. The weights
associated with vf and vl are set to 0 and 1, respectively,
and both are added to a set Ω that holds vertices for later
processing. The first part of the algorithm searches for all
loops in the graph, using the Dijkstra algorithm. To this
end, it iterates over the set Ω until all loops are processed.
Dijkstra’s algorithm is started for all elements of Ω to com-
pute a path from Ω into Ω and the overall shortest one is
used (starting at vs and ending at ve). On its first iteration,
these vertices will be vf and vl, as these are the only ver-
tices in Ω. A collateral outcome of the Dijkstra algorithm
is the path cost to reach a vertex vi from the start vertex
vs, which is equal to d(vs, vi), as defined in Equation (2).
Based on these costs, we update the weights (wi cf. Equa-
tion 1) of the vertices (vi) on this path according to

wi = ws +
d(vs, vi)

d(vs, ve)
(we − ws).

By updating the vertices on the shortest path, we detect
junctions, i.e., vertices whose degree is greater than 2, and
add these vertices to the set Ω for later processing. After-
wards, we remove the processed path, i.e., the edges from
the graph G, such that these edges are not used again, and
remove the first and last vertex vs and ve, iff their degrees
are reduced to zero. The algorithm is then iterated over the
remaining set Ω, thus we process all loops connected to
the loop closed by the vertices vf and vl. After repeating
this algorithm for every path doubly connected to the main
loop, vertices of a path that has only one connection to
the main loop remain in Ω. These are finally processed by
simply distributing their connecting weight to all vertices
on such a path.
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Fig. 6. Graph with an extra branch connected to only one vertex. The computed weights of the main loop are the same as
in Figure 5, whereas the weight of vertex B is distributed to the extra vertices. Trail edges are marked blue, branch edges
red, cf. Section 3.4.
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Fig. 7. Two alternate circles and the resulting weights. The shortest path from A to H is A-B-C-G-A′. This graph
contains only trail edges (marked blue), cf. Section 3.4.

3.6 6D SLAM with an Explicit Loop Closing
Heuristic

Assume that in the process of acquiring and matching
scans consecutively using ICP, we detect a closed loop.
The Explicit Loop Closing Heuristics (ELCH) starts with
covariance calculation of adjacent poses, after matching
the 3D scans that form the closed loop, yielding a trans-
lation vector ∆X. The LOA algorithm is executed sep-
arately for every dimension. Computing a fraction of a
possibly large rotation cannot be performed by using Eu-
ler angles, since these consist of three angles that depend
on each other. SLERP does not have this property and is
therefore usually used for interpolation tasks. The exact
computation for the error distribution is outlined in AP-
PENDIX B.

In a post processing step we iterate one more time the
scan matching and update the poses as presented in [13] to
improve the overall map quality. Note that these changes
to the map are rather small. This step is necessary since
the difference between the first and last scan of a loop and
its distribution over the SLAM graph alone does not yield
a map with an overall minimal error. Using LUM takes
significantly more iterations to minimize the error and to

close loops, because in every iteration the loops are closed
in small steps. This strategy always considers all edges in
the SLAM graph, while we gain performance by initially
dissociating one link and adding it back afterwards.

So, the time-consuming iteration over all scans during
acquisition is avoided, allowing a much larger number of
scans to be handled in reasonable time. Experiments de-
scribed in the next section confirm that the reduction is
in fact significant (Table 2). Since the number N of data
points in a single scan (in the order of 30,000) is typically
still larger than the number of scans n (in the order of
1,000), the run time is dominated by computing the scan
matching, which is in O(N logN). The required Dijkstra
algorithm is implemented inO(n log n) time for each loop.
Figure 8 summarizes the overall control flow as well as the
runtime of the different steps.

4 EXPERIMENTS AND RESULTS

4.1 Evaluation with Respect to Ground Truth
Experiments have been made with the software frame-

work slam6d [11] and with various data sets. To demon-
strate the results, we will use the publicly available data
set HANNOVER2 here, as provided by O. Wulf, Leibniz
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Fig. 8. Schematic overview of the complete algorithm, namely the interaction of ICP, ELCH and LUM (as extension of
Figure 3). The dashed line separates the global optimization part that is executed a single time in the and as a post
processing step. The threshold ε used to determine if a scan has changed its pose is the same in all three sub-algorithms.
N is the number of points in a single 3D scan, n denotes the number of poses, and l is the number of loops.

University Hannover, Germany, to evaluate our algorithm.
The data set, part of the Robotic 3D Scan Repository [32],
has been acquired in an urban area and consists of 924 3D
scans, each containing up to 35 000 3D data points (cf. Fig-

ure 2). A mobile robot uses a continuously rotating 3D
scanner to deliver the data [10]. In [10] a benchmark for
this data set has been presented using 6D SLAM with ICP
and LUM.
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Algorithm 1 Loop Optimizer Algorithm (LOA)
Input: Graph G = (V,E)

first vertex vf
last vertex vl
edge costs cl,k : E → R+

Output: vertex weights wi : V → [0, 1]

1. wf ← 0
2. wl ← 1
3. Ω← {vf , vl} /* Loop Closing */

/* Dijkstra returns a path p := (vs, v1, v2, . . . , vn, ve)
*/

/* and minimal costs
d(vs, vs), d(vs, v1), . . . , d(vs, ve) */

4. while find shortest paths between any two vertices
{vs, ve} ∈ Ω with Dijkstra do

5. for all vertices vi on p do /* trail edge */
6. wi ← ws + d(vs,vi)

d(vs,ve)
(we − ws)

7. if deg(vi) > 2 then
8. Ω = Ω ∪ {vi}
9. end if

10. end for
11. remove edges of path p in G
12. if deg(vs) = 0 then
13. Ω = Ω \ {vs}
14. end if
15. if deg(ve) = 0 then
16. Ω = Ω \ {ve}
17. end if
18. end while
19. while Ω 6= ∅ do /* only branch edges left */
20. select vi ∈ Ω
21. for all neighbors vn of vi do
22. wn ← wi

23. delete edge {vi, vn}
24. if deg(vn) > 0 then
25. Ω = Ω ∪ {vn}
26. end if
27. end for
28. Ω = Ω \ {vi}
29. end while

To evaluate the map computed by our algorithm, some
kind of ground truth is necessary. In [10] we presented a
method to compute planar reference poses and a reference
orientation about the vertical axis. For the evaluation in
this paper we extend our results: A 2D ground truth map
of the area is provided by the German land registry office
(Katasteramt). It contains the buildings with a precision
of 1 cm. In addition, we obtained airborne based 3D data.
Based on this data, so-called reference data is generated as
follows (see Figure 9): The 2D map is extrapolated to 3D

Fig. 9. Top left: Schema of the airborne based acquisition
of reference data. Top right: 3D map consisting of aerial
laser data and extrapolated 2D reference data. Bottom:
Airborne and 3D map (green) with superimposed 3D scans
(black).

by vertical 3D points and fused with the 3D data from the
airplane. The result is a precise 3D reference map. Using
this 3D reference map, we generate ground truth poses for
all 924 3D laser scans by matching the scans with the ref-
erence map. We will refer to these poses as “ground truth”.
Figure 10 shows the trajectories of LUM and ELCH com-
pared to ground truth and Figure 11 shows the result of ap-
plying both algorithms and the generated map, overlayed
over a sattelite image for visual comparison. To bench-
mark our strategy, we used the publicly available back ends
TORO and HOG-Man by Grisetti et al. [23, 33] and in-
corporated them into our SLAM software. Details can be
found in Section 4.2 and the resulting trajectories for using
them as a back end to ELCH are LUM in Figure 12.

For analyzing the optimization of different SLAM
strategies, we plot the error in the transformation of three
exemplary scans. To visualize the translational error of ev-
ery iteration, we use the Euclidean distance of the scan to
the ground truth position as

etranslation =
∥∥ X̂i − X̂i,ref

∥∥,

AUTOMATIKA 52(2011) 3, 199–222 207



A Heuristic Loop Closing Technique for Large-Scale 6D SLAM J. Sprickerhof, A. Nüchter, K. Lingemann, J. Hertzberg

-80

-60

-40

-20

0

20

40

60

80

100

-60 -40 -20 0 20 40 60 80 100 120 140

m
et

er

meter

ground truth
LUM

-80

-60

-40

-20

0

20

40

60

80

100

-60 -40 -20 0 20 40 60 80 100 120 140

m
et

er

meter

ground truth
ELCH

Fig. 10. Comparison of globally optimized graph SLAM (LUM, top) and the proposed ELCH strategy (bottom) against
ground truth. The dots on the bottom represent the places where loops were closed, whereas LUM did not find the loop in
the rectangle on the top.

where a scan pose X is defined as (X̂, X̃)T , with X̂ =
(x, y, z)T . To describe the rotational error, we convert the
rotation part X̃ of their poses X into the quaternion repre-
sentation, i.e., X̃ = (p, q, r, s)T . The inner product of it
yields the angle between the two 4 dimensional vectors.

erotation = arccos
∣∣∣ X̃i · X̃i,ref

∣∣∣ .

The Figures 13 and 14 present graphs the residual error for
every scan, using these equations and Table 1 compares
the means and standard deviations. Our ELCH heuristics
returns the best results, which we count as a fortunate co-
incidence, since the ground truth poses are unknown to the
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Fig. 11. Top: Comparison of the final combined result, applying LUM offline after processing the scans online with ELCH,
against ground truth. Bottom: Image from Google Maps overlayed with the generated map (cf. Figure 2).

optimization processes. The scans are moved to gain a
better mutual fit, but this might relocate them away from
ground truth. Judging the results visually, as it is com-
monly done, all registrations seem to be good and valid.
However, a consistent map is not necessarily a correct one.

Figures 15 and 16 present the rotational and transla-
tional errors for two scans while executing our new strat-

egy ELCH in comparison to our previous strategy LUM.
To give greater detail, we zoom into the curves of the
ELCH algorithm on the right side, showing the individual
steps. In the first iteration (white background, very small),
the initial pose correction is applied. Then (shown in very
light gray), the ICP algorithm registers the scan, relative
to the previous scan. The third step (in light gray) depicts
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Fig. 12. Top: Comparison of trajectories, as computed by TORO and HOG-Man using the ELCH graph, against ground
truth. Bottom: Computed trajectories with ELCH for online processing and TORO respectively HOG-Man for post
processing.

the error during the ICP loop closing iterations. Scans not
at the end of a closed loop do not have this step. Fourth
(gray) are the corrections of LOA, and last (dark gray) the
iterations of the final relaxation algorithm can be seen.

Figure 15 shows scan 344 which is in the second loop,

thus the two compared strategies display different initial
errors. We notice that LUM starts to move the scan slowly
into the right position, getting faster when it is almost done.
The reason is that the movement is forced by the other
scans of the loop at this stage of the procedure, rather than

AUTOMATIKA 52(2011) 3, 199–222 210



A Heuristic Loop Closing Technique for Large-Scale 6D SLAM J. Sprickerhof, A. Nüchter, K. Lingemann, J. Hertzberg

0

5

10

15

20

25

30

35

0 100 200 300 400 500 600 700 800 900

Tr
an

sl
at

io
n

er
ro

ri
n

m
et

er

Scan

LUM
ELCH
TORO

HOG-Man

0

2

4

6

8

10

12

0 100 200 300 400 500 600 700 800 900

R
ot

at
io

n
er

ro
ri

n
de

gr
ee

Scan

LUM
ELCH
TORO

HOG-Man

Fig. 13. Plot of the residual error after applying LUM, ELCH, TORO and HOG-Man as online processing. Comparing
the translation error (top) and the rotation error (bottom) against ground truth.

by the loop closing constraint. The ELCH algorithm, on
the other hand, has only the loop closing constraint, and
applies the offset in one step.

The second example (Figure 16) is the 556th scan (la-
bel H in Figure 2). It is a scan that closes a loop, so

the ICP loop closing iterations are shown. Being a small
loop with no big error, the correction of it is quite small.
This scan is far away from the origin and not connected
to any other loops when it is first corrected, so LOA
changes its position again once it gets connected to other
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Fig. 14. Plot of the residual error after applying LUM, TORO and HOG-Man as post processing, with ELCH as online
processing. Comparing the translation error (top) and the rotation error (bottom) against ground truth.

loops. In both cases, the LUM algorithm at the end of the
ELCH part converges much faster because of the previ-
ous corrections. This is visible in Table 2, too, where we
compare the runtime of the different strategies. An ani-
mated comparison between ELCH and LUM can be seen

at http://kos.informatik.uni-osnabrueck.
de/download/elch/ 2.

2The video compares our previous strategy LUM (on the left) with
our new strategy ELCH. It shows the different steps during computation
of the elapsed computing time.
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Table 1. Means and standard deviations of the residual error of the scans, after being processed with the denoted algo-
rithms.

Algorithm Translation [m] Translation [m]
(only x and y)

Rotation [◦]

ICP 9,16 ± 6,70 8,35 ± 6,22 3,31 ± 2,64
LUM 6.24 ± 7.07 3.78 ± 4.66 3.44 ± 2.55
ELCH 4.35 ± 4.96 1.50 ± 2.95 2.61 ± 1.84
TORO 4.37 ± 4.74 2.33 ± 2.85 2.35 ± 1.76
HOG-Man 5.00 ± 5.05 4.34 ± 4.09 2.19 ± 1.73
ELCH & LUM 4.05 ± 4.33 1.37 ± 2.86 2.90 ± 2.03
ELCH & TORO 3.58 ± 2.61 2.30 ± 2.28 2.04 ± 1.25
ELCH & HOG-Man 7.60 ± 7.28 2.17 ± 5.63 6.10 ± 3.93
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Fig. 15. Convergence of the 344th scan. The right side shows the stages of ELCH, namely ICP , LOA and LUM

Table 2. Runtime (in µs) comparison on an Intel Core i7 at 2.66 GHz with 8 GB RAM processing the complete data set
HANNOVER2. Total runtime is is the runtime of the complete strategy, including utility functions. A barchart of the most
important results (in bold face) can be found in Figure 17.

strategy ICP online processing post processing total

online pro. post pro. front end back end front end back end runtime

LUM 29 348 000 911 942 000 71 495 000 1 091 669 000
ELCH 25 664 000 14 082 000 7 142 40 725 000
TORO 25 730 000 14 835 000 7 217 000 49 764 000
HOG-Man 25 360 000 8 122 000 10 409 000 45 733 000
ELCH LUM 25 697 000 13 987 000 7 182 106 136 000 11 855 000 172 435 000
ELCH TORO 25 237 000 14 083 000 7 065 159 431 000 352 000 201 092 000
ELCH HOG-Man 25 969 000 13 769 000 7 080 156 931 000 3 830 000 201 928 000
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Fig. 16. Convergence of the 556th scan. The right side shows the stages of ELCH, namely ICP , ELCH ICP , LOA
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online part are minor, LUM outperforms the other approaches in the post processing phase. Please note that the runtimes
for the online part are cumulative and previous corrections influences future loop detection, this explains the different
durations of the front end.

We evaluated the ELCH algorithm on other data sets,
as well. As a second example we used the data set HAN-
NOVER1 which is also available under [32] and was used
before in [13]. The boost in runtime and map quality is
comparable to the other experiment, so we present only the
resulting map (Figure 18) and the trajectories, compared to
ground truth (Figure 19).

4.2 Comparison with Related Work
To show the different design ideas of our algorithms

compared to other state of the art approaches, we will de-
scribe the data flow first (cf. Figure 20). The approach
by Grisetti et al. [33] strictly separates a SLAM front end
that builds the SLAM graph, and a SLAM back end that
optimizes the graph. The SLAM front end consists of 4
parts: First, for every new laser scan, a vertex is added
to the graph and connected to the previous one via scan
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Fig. 18. View of the final map of the data set HANNOVER 1, processed with ELCH and LUM. The robot explored the area
along the trajectory, following the route A-B-C-D-A-E-F -A-B-G-C-B-A-H-I-A.
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Fig. 19. Plot of the final trajectories of the data set HANNOVER 1, after processing with ELCH only and a combination
of ELCH and LUM, against ground truth.
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Fig. 20. Schematic overview of the TORO front and back
end as described in [33].

matching. Second, loops are detected via covariance ap-
proximation, and third for each scan within a 3σ distance
from every scan, scan matching is applied to generate all
possible loop closing edges. In a fourth step spectral clus-
tering is used to extract a consistent set of edges. As a post
processing step, the resulting SLAM graph is optimized by
algorithms like TORO or HOG-Man [23, 33, 34]. Please
bear in mind that, to our knowledge, there is no publicly
available implementation of this SLAM front end as well
as no information about the runtime.

We extend this approach by addressing the issue of sep-
aration of the front and back end. Any such splitting that
does not correct loops at least approximately during front
end operation, has to cope with a steadily growing σ ellipse
where all scans have to be matched against each other. But,
as scan matching is sensible to the initial poses, one has to
try many different loop correction candidates because of
the lack of context information, i.e., other matchings from
surrounding scans. On the other hand, as σ is approxi-
mative, there is no guarantee that all loops are detected if
the robot has traveled far enough. The ELCH heuristic is
applied at little cost during online processing in order to
continue scan matching based on pose estimations that are
improved by the information from loop closing. In that
sense, our approach interleaves the front and back end op-
erations of Figure 20 in order to improve the overall quality
of the starting pose estimations for loop detection.

The SLAM back ends TORO and HOG-Man are avail-
able from [35]; the original SLAM front end as described
in [33] does not appear to be available. To make a compar-
ison, we used our own SLAM front end, namely the same
as for ELCH and LUM. For the comparison with ELCH,
we generated a SLAM graph with only one loop closing
edge, found by scan matching and executed the back end
whenever a loop was detected. This was done by replacing

LOA (part (IX) in Figure 3) with TORO and HOG-Man,
respectively. With this approach we where able to com-
pare the graph optimization part of ELCH against TORO
and HOG-Man. Results are presented in Figure 13 and
Tables 1 and 2. For an additional comparison, we used
TORO and HOG-Man as a back end to our LUM algo-
rithms. Thus, we were able to test it as a post processing
step after ELCH. For this we used the same SLAM graph
as for LUM, but iterated the scan matching part of the front
end first and then optimized the resulting graph with TORO
and HOG-Man. This allowed us to get comparable results
with respect the the original control flow of the related ap-
proaches, as depicted in Figure 20. Results are given in
Figure 14 and Tables 1 and 2.

4.3 Interpretation of the Results

Large scale SLAM with many 3D scans yields a com-
plex optimization system. In previous own work, we have
extended the ICP algorithm to solve SLAM by globally
consistent scan matching, i.e., 6D SLAM [13]. The ad-
vantage of this approach is the iterative fashion. It results
in correct and consistent maps. Previously we iterate scan
matching, i.e., closest point calculation, i.e., covariance es-
timation, with a SLAM back end. Other state of the art
SLAM solutions, like Toro and HOG-Man used for com-
parison here, strictly separate the SLAM back and front
end and are typically faster [33, 34] the the original 6D
SLAM. However, modeling the uncertainties in the map
only by one mean and covariance per pose, this is fragile
and prone to yield imprecise maps. The iteration of SLAM
front and back end calculates mean and covariances sev-
eral times, thus capturing the underlying statistical process
much better. More precisely, c ∗ l iterations are needed for
l detected loops and a maximal number of LUM iterations
c.

With the presented ELCH heuristics we reduce the num-
ber of iterations between SLAM front and back end to c+l,
thus lowering the overall runtime significantly in compari-
son to competing approaches (cf. Figure 17), yet yielding
at least the same map quality (cf. Table 1) – as was proven
by evaluation against independently acquired ground truth.
Further experiments have been carried out, e.g., by Pellenz
et al. to process a dataset of Disaster City [36].

5 CONCLUSION AND OUTLOOK

This paper has introduced a novel approach to scan
matching based GraphSLAM. The usual approach to loop
closing is to build a graph of poses and optimize it after-
wards by iterating scan matching and graph optimization.
Our approach dissociates the scan that closes the loop from
its previous scan and registers it explicitly. The result-
ing offset is distributed heuristically over the SLAM graph
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such that a minimal error occurs, with respect to the un-
certainties in correlated poses. To validate the correctness
of your SLAM-built maps in an outdoor setting, we have
refined the evaluation method presented in [1].

The ELCH algorithm proposed in this paper yields an
improved estimation of scan poses during online scan pro-
cessing that speeds up the global post processing step
LUM, if not enabling a correct global optimization in the
first place by closing loops smartly. The major part of the
algorithm’s run time, however, is consumed by this post
processing step, which is still necessary to obtain a glob-
ally consistent optimization at a detailed level. Thus, fur-
ther research will be invested on speeding up the LUM al-
gorithm.

FURTHER EXPERIMENTS

Results of experiments with numerous other
datasets of different robots can be found at
http://kos.informatik.uni-osnabrueck.
de/download/elch/. Speed and accuracy are
comparable to the ones described in this paper.

APPENDIX A 6D SLAM

In this section, we briefly recapitulate our previously
published 6D SLAM method [13, 27], to make this paper
self-sufficient. Its basis is a fast and reliable scan matching
algorithm for ICP and Lu/Milios style relaxation (see Fig-
ure 3). We will refer to this method as LUM that includes
the estimation of the covariance matrices and the equation
solver, the latter one is our current SLAM back end. The
back end is based on a sparse Cholesky decomposition [27]
and is therefore similar to the LU decomposition that yields
the most accurate results in [24, 25].

A.1 6D SLAM with ICP Based Scan Matching

We use the ICP algorithm [12] to calculate the transfor-
mation while the robot is acquiring a sequence of 3D scans.
ICP calculates point correspondences iteratively. In each
iteration step, the algorithm selects the closest points as
correspondences and calculates the transformation (R, t)
for minimizing the equation

E(R, t) =

m∑

i=1

∥∥mi − (Rdi + t)
∥∥2,

where the tuples (mi,di) of corresponding model and data
points are given by minimal distance, i.e., mi is the closest
point to di within a close limit [12]. The underlying as-
sumption of the ICP algorithm is that the point correspon-
dences are correct in the last iteration. In each iteration,
the transformation is calculated by the quaternion based
method of Horn [37].

To digitalize environments without occlusions, multiple
3D scans have to be registered. Consider a robot travel-
ing along a path, and traversing (n + 1) 3D scan poses
X0, . . . ,Xn. A straightforward method for aligning sev-
eral 3D scans taken from the poses X0, . . . ,Xn is pairwise
ICP , i.e., matching the scan taken from pose X1 against
the scan from pose X0, matching the scan from X2 against
the one from X1, and so on. The detection of closes loops
operates on the registered scans thus far, as sketched in
Section 3.2.

A.2 6D SLAM with Global Relaxation

Once a closed loop is detected, a 6 DoF graph optimiza-
tion algorithm for global relaxation is employed, a vari-
ant of GraphSLAM. Our method relies on a notion of the
uncertainty of the poses, calculated by the registration al-
gorithm. The following method extends the probabilistic
approach first proposed in [19] to 6 DoF. For a more de-
tailed description of the extension refer to [13] and [27].
For each pose X, the term X̄ denotes a pose estimate, and
∆X is the pose error.

The positional error of two poses Xj and Xk is de-
scribed by:

Ej,k =

m∑

i=1

∥∥Xj ⊕ di −Xk ⊕mi

∥∥2 =

m∑

i=1

∥∥Zi(Xj ,Xk)
∥∥2.

Here, ⊕ is the compounding operation that transforms a
point into the global coordinate system. For small pose
differences, Ej,k can be linearized by use of a Taylor ex-
pansion:

Zi(Xj ,Xk) ≈ X̄j ⊕ di − X̄k ⊕mi

−
(
∇jZi(X̄j , X̄k)∆Xj −∇kZi(X̄j , X̄k)∆Xk

)

where ∇j , ∇k denotes the derivative with respect to Xj

and Xk respectively. Utilizing the matrix decompositions
MiHj and DiHk of the respective derivatives that sepa-
rates the poses from the associated points gives:

Zi(Xj ,Xk) ≈ Zi(X̄j , X̄k)− (MiHj∆Xj −DiHk∆Xk)

≈ Zi(X̄j , X̄k)−
(
MiX

′
j −DiX

′
k

)

Appropriate decompositions are given for Euler angles,
quaternion representation and the Helix transformation
in [38]. In the following, we will work with the pose repre-
sentation as Euler angles. This matrix decomposition can-
not be derived from first principles and was first presented
in [13]. Since Mi as well as Di are independent of the
pose, the positional error Ej,k is minimized with respect to
the new pose difference E′j,k:

E′j,k = (Hj∆Xj −Hk∆Xk)

= (X′j −X′k).
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E′j,k is linear in the quantities X′j that will be estimated
so that the minimum of Ej,k and the corresponding covari-
ance are given by

Ēj,k = (MTM)−1MTZ

Cj,k = s2(MTM).

where s2 is the unbiased estimate of the covariance of the
identically, independently distributed errors of Z:

s2 = (Z−MĒ)T (Z−MĒ)/(2m− 3).

Here Z is the concatenated vector consisting of all
Zi(X̄j , X̄k) and M the concatenation of all Mi’s.

Up to now all considerations have been on a local scale.
With the linearized error metric E′j,k and the Gaussian
distribution (Ēj,k,Cj,k) a Mahalanobis distance that de-
scribes the global error of all the poses is constructed:

W =
∑

j→k

(Ēj,k −E′j,k)TC−1j,k(Ē′j,k −E′j,k)

=
∑

j→k

(
Ēj,k − (X′j −X′k)

)
C−1j,k

(
Ē′j,k − (X′j −X′k)

)
.

(3)

In matrix notation, W becomes:

W = (Ē−HX)TC−1(Ē−HX). (4)

Here H is the signed incidence matrix of the pose graph,
Ē is the concatenated vector consisting of all Ē′j,k and C

is a block-diagonal matrix comprised of C−1j,k as sub ma-
trices. For deriving (4) from (3) we used an incidence ma-
trix and stacked the matrices Ē′j,k and C−1j,k . For the latter
stacking must proceed in a diagonal fashion. Minimizing
function (4) yields new optimal pose estimates. The min-
imization of W is accomplished by the following linear
equation system:

(HTC−1H)X = HTC−1Ē

BX = A.

The symmetrical matrix B consists of the sub matrices

Bk,j = Bj,k =





n∑

l=0

C−1j,l (j = k)

−C−1j,k (j 6= k).

The entries of A are given by:

Aj =

n∑

k=0
k 6=j

C−1j,kĒj,k.

In addition to solving for X this allows us to compute the
associated covariance CX of X:

CX = B−1.

The results have to be transformed to obtain the optimal
pose estimates as follows:

Xj = X̄j −H−1j X′j ,

Cj = (H−1j )CX
j (H−1j )T .

Figure 21 shows a simple graph containing five vertices
and five directed edges. Each edge denotes a scan match-
ing, where the model set corresponds to the 3D point cloud
with an outgoing edge and the data set corresponds the
point cloud with the incoming edge. For all points in the
data set the closest point in the model set is calculated.
Based on these point pairs the covariance matrices are es-
timated as stated above. The matrix B features 4 entries,
since the first 3D scan, i.e., scan 0, defines the coordinate
system and is not transformed. However, the covariance
matrices with index 0 appear in the loop closing and at
B1,1.

Pose Representation using Euler Angles Following the
convention in [13], we represent a pose X, as well as its
estimate and error, in Euler angles

X =




tx
ty
tz
θx
θy
θz




X̄ =




t̄x
t̄y
t̄z
θ̄x
θ̄y
θ̄z




∆X =




∆tx
∆ty
∆tz
∆θx
∆θy
∆θz



.

The matrix decomposition MiH = ∇Zi(X̄) is given in
Figure 22. As required, Mi contains all point information,
while H expresses the pose information. Thus, this matrix
decomposition constitutes a pose linearization similar to
that proposed in the preceding section. While the matrix
decomposition is arbitrary with respect to the column and
row ordering of H, this particular description was chosen
due to its similarity to the 3D pose solution given in [19].
Finally, a system of 6n equations (n denotes the number of
poses to be estimated) has to be solved, but since the pose
graph is sparse the resulting equation system is sparse, too.
We use a sparse Cholesky decomposition as SLAM back
end [27].
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Fig. 21. Simple loop containing 5 vertices. The corresponding system of linear equations is shown on right side.

H =




1 0 0 0 −t̄z cos(θ̄x) + t̄y sin(θ̄x) t̄y cos(θ̄x) cos(θ̄y) + t̄z cos(θ̄y) sin(θ̄x)
0 1 0 t̄z −t̄x sin(θ̄x) −t̄x cos(θ̄x) cos(θ̄y) + t̄z sin(θ̄y)
0 0 1 −t̄y t̄x cos(θ̄x) −t̄x cos(θ̄y) sin(θ̄x)− t̄y sin(θ̄y)
0 0 0 1 0 sin(θ̄y)
0 0 0 0 sin(θ̄x) cos(θ̄x) cos(θ̄y)
0 0 0 0 cos(θ̄x) − cos(θ̄y) sin(θ̄x)




Mi =




1 0 0 0 −dy,i dz,i
0 1 0 −dz,i dx,i 0
0 0 1 dy,i 0 −dx,i


 .

Fig. 22. Definition of the matrix decomposition M and H.

APPENDIX B ERROR COMPUTATION AND
DISTRIBUTION

The theoretical examples in Section 3.3 had always the
first scan of the loop in the origin of the global coordinate
system. Thus it was easy to compute the offset and dis-
tribute the error. In practice the origin is normally defined
by the scan, i.e. where the robot was turned on. To keep
this constraint, we have to transform all ELCH corrections
into the coordinate system of the first scan. The needed
computations are detailed in the following section, using
matrices for ease of writing.

For this section P0
i defines the R4×4 transformation ma-

trix of the ith scan in the coordinate system of the first one.
The inverse transformation is written as P. With this defi-
nitions one can transform between the coordinate systems
of the different scans with the following equation:

P0
i = P0

jP
j
i , or Pj

i = P0
jP

0
i . (5)

The ICP offset, resulting from matching the last scan l of
the loop against the first one f , is computed in the coordi-
nate system of the first scan and one can compute the δ by
multiplying the pose of the last scan before using ICP (Pf

l )
with the pose thereafter (P̊l):

δf = P̊f
l P

f
l .

With (5) this is transformed into the coordinate system of
the first scan:

δf = P0
f P̊

0
lP

0
fP

0
l . (6)

Next, a δ for every scan is computed using LOA (Sec-
tion 3.5) resulting in a δi for every scan i. This is now used
to compute the new poses for every scan:

P̂f
i = δfi P

f
i .

As indicated above, this would transform the first scan as
well, so it would not define the origin anymore. To move
the origin back to where it was before, we transform all
other scans with the inverse of δ0:

P̃f
i = δf0 δ

f
i P

f
i .

Using (5) we can transform the equations into the coordi-
nate system of the first scan:

P̃0
i = P0

f P̃
f
i ,
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and for the right side:

P̃0
i = P0

fδ
f
0 δ

f
i P

0
fP

0
i . (7)

For some scans we can simplify these equations. For scan
f (with δff = I) it results into:

P̃0
f = P0

fδ
f
0 .

The equation for scan l with δfl = δf , using (7) and (6):

P̃0
l = P0

fδ
f
0P

0
f P̊

0
lP

0
fP

0
lP

0
fP

0
l ,

or, shortened:

P̃0
l = P0

fδ
f
0P

0
f P̊

0
l .
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